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Abstract. In this article, I investigate the role of composition for the
architecture of IT-systems as it results from their interactions. This
gives rise to the notion of the interface of a system, as the set of all
its composition-related information, as well as the notion of a compo-
nent as a system constructed for a particular composition and therefore
equipped with a well de�ned interface.
I distinguish between two main composition classes. On the one hand we
have functional composition, exposing the system function as a whole and
establishing a directed �is-part-of� relationship between a supersystem
and its respective subsystems (�vertical relation�). On the other hand,
the composition of system projections, named �roles�, leads to protocols
which are closely related to games in economics (�horizontal relation�).
Several well-known component models are discussed in terms of their sup-
port for these composition classes, including distributed objects, SOA,
REST and client-server. I also discuss some architecture reference mod-
els such as the OSI model, the LCIM and RAMI4.0. Finally, I sketch
the idea of an interaction-oriented architecture as an answer to the ten-
sion between the need to describe interactive IT-systems with executable
functions and the non-deterministic character of their horizontal inter-
actions.

1 Introduction

The forword of [6] opens with the question, �Why can we get the drawings for
a house that's several decades old, but we are unable to see the architecture of
software written last year?� In my impression there is still some truth in this
sentence and this article's contribution is to provide some understanding for this
state of a�airs and how to improve it.

It is consensus in computer science to understand the structure of a system
in terms of the compositional relationships of its interacting components as the
concept-de�ning aspect of its architecture [28,18,39,6]. In this sense, the structure
of a system � or its architecture � is not left to the arbitrary consideration of
some engineer or even some power point artist, but is inherent in the system as a
whole. In my understanding structure is actually the concept with which we can
give �wholeness� an intelligible meaning [29]. Thus, the concept of composition
of IT systems not only determines a meaningful framework for the discourse of
their interoperability [34], but, by de�nition, also determines the discourse of
their architecture.



In this article, I work out this insight by �rst introducing concept of compo-
sitionality in section 2 to derive three quick bene�ts. In section 3, I apply the
composition concept to discrete systems. I demonstrate that hierarchical sys-
tem relations stem from homogenous composition where (sub)-systems compose
to (super)-systems and non-hierarchical system relations stem from nonhomo-
geneous composition where system projections, or roles, compose to protocols.
Additionally, in section 4 I propose an interaction-oriented architecture to render
interactive IT-systems robust against changes in their interactions. In section 5
and 6 I discuss several component models and so called reference architectures.
I close the article with a short summary and outlook.

2 Compositionality

Mathematically composition1 means making one out of two or more mathemat-
ical objects with the help of a mathematical mapping. For example, we can take
two functions f, g : N → N, which map the natural numbers onto themselves,
and, with the help of the concatenation operator ◦, we can de�ne a composed
function h = f ◦ g by h(n) = f(g(n)).

If we apply this notion to interacting systems, which we denote by S1, . . . ,Sn,
then, regardless of the concrete representation of these systems, we can de�ne
their composition into a supersystem by means of a corresponding composition
operator compS as a partial function2 for systems:

Stot = compS(S1, . . . ,Sn). (1)

The �rst bene�t we can derive from this de�nition is that we can now classify
the properties of the supersystem into those that arise from the same properties
of the subsystems and those that arise from other properties of the subsystems:

De�nition 1. A property α : S → A of a system S ∈ S is a partial function
which attributes values of some attribute set A to a system S ∈ S. I call a
property α of a composed system Stot �(homogeneous) compositional� with respect
to the composition compS , if there exists an operator compα such that α(Stot)
results as compα(α(S1), . . . , α(Sn)), thus, it holds:

α(compS(S1, . . . ,Sn)) = compα(α(S1), . . . , α(Sn)) (2)

Otherwise I call this property �emergent�.

1 It was mainly Arend Rensink in his talk �Compositionality huh?� at the Dagstuhl
Workshop �Divide and Conquer: the Quest for Compositional Design and Analysis�
in December 2012, who inspired me to these thoughts and to distinguish between
composition of systems and the property of being compositional for the properties
of the systems.

2 �Partial� means that this function is not de�ned for all possible systems, i.e. not
every system is suitable for every composition



For mathematical structures α is a homomorphism. Emergent properties may
result also from other properties αi of the parts if α (compS(S1, . . . ,Sn)) =
compα (α1(S1), . . . , αn(Sn))).

A simple example of a homogeneous compositional property of a physical
systems is their mass: The mass of a total system is equal to the sum of the
masses of the individual systems. A simple example of an emergent property of
a physical system is the resonance frequency of an oscillating circuit consisting
of a coil and a capacitor. It results from their inductance and capacity.

2.1 Computable functionality

One of the most important properties of IT-systems is the computability of
their system function. Based on considerations of Kurt Gödel, Stephen Kleene
was able to show [20] that this property is indeed compositional by construction.
Starting from given elementary operations (successor, constant and identity), all
further computable operations on natural numbers can be constructed by the
following 3 rules (let Fn be the set of all functions on the natural numbers with
arity n):

1. Comp: Be g1, . . . , gn ∈ Fm computable and h ∈ Fn computable, then f =
h(g1, . . . , gn) is computable.

2. PrimRec: Are g ∈ Fn and h ∈ Fn+2 both computable and a ∈ Nn, b ∈ N
then also the function f ∈ Fn+1 given by f(a, 0) = g(a) and f(a, b + 1) =
h(a, b, f(a, b)) is computable .

3. µ-Rec: Be g ∈ Fn+1 computable and ∀a∃b such that g(a, b) = 0 and the µ-
Operation µb[g(a, b) = 0] is de�ned as the smallest b with g(a, b) = 0. Then
f(a) = µb[g(a, b) = 0] is computable.

Comp states that given computable functions, their successive as well as their
parallel application is in turn a computable function. PrimRec de�nes simple
recursion, where the function value is computed by applying a given computable
function successively a prede�ned number of times. In imperative programming
languages it can be found as FOR loop construct as well as operation construct
for one step recursion. The third rule µ-Rec states that a recursive calculation
can also exist as an iterative solution of a computable problem, in the case of
the natural numbers as a determination of roots. In imperative programming
languages, this corresponds to the WHILE loop construct.

2.2 The notion of interface and component

The second bene�t we can derive from our de�nition of composition is a clear
de�nition of the notion of interface and component. We are now in the need for
a term that comprises everything a composition operator needs to know about
a system. [42,9] use the term interface for this, a suggestion I am happy to
endorse. This makes the question of what an interface actually is decidable. The
recipe is that the claim for a mathematical object to be an interface must be



substantiated �rst by providing a system model, and secondly, by presenting a
composition operator so that thirdly, it becomes comprehensible which parts of
a system model belong to the system's interface.

A component becomes a system that is intended for a particular composition
and therefore has a correspondingly well-de�ned interface that, by de�nition, ex-
press the intended composition. If we additionally require the composition to be
somehow �simple�, then a component model also introduce a complexity bound-
ary. For example, usually engineers try to avoid mutually recursive operation
calls between components and thereby, in fact, avoid general recursive compo-
sition � which is much more complex then parallel or sequential composition or
the one-step recursion of a single operation (see below).

2.3 Substitutability and compatibility

The third bene�t of our composition concept comes from the possibility to de�ne
substitutability and to distinguish downward from upward compatibility.

For this purpose we �rst consider two systems A and B which can be com-
posed by a composition operator C into the supersystem S = C(A,B). System
A can certainly be substituted by another system A′ in this composition if
S = C(A′,B) also holds. Please note that substitutability may relate seemingly
unrelated things, such as raspberry juice and cod liver oil, both of which are
suitable fuels for a Fliwatüt [21].

Now, let us assume that A′ additionally extends A in a sense to be con-
cretised, notated as A v A′, and another operator C ′ composes A′ and again
B into the supersystem S ′ = C ′(A′,B), so that the property of extension is
preserved, thus also S v S ′ holds. Then we speak of �compatibility� under the
following conditions: if C ′ applied to the old system A still produces the old
system S = C ′(A,B), then A behaves �upward compatible� in the context of the
composition C ′. And if A′ can replace A in the old context C in the sense that
S = C(A′,B), we say that A′ behaves �downward compatible� in context C.

A simple example is a red light-emitting diode (LED) A and a socket B
composing to a red lamp S = C(A,B). A new LED A′ that adds to the old
one the ability to glow green when the current is reversed is called downward
compatible with A if it �ts into the same socket and makes the lamp behave as
with the original LED.

Actually, of course, the bi-colour LED is intended for a new lamp circuit that
supports this bi-colour. Since the socket remained unchanged, inserting the old
LED into the new lamp results in the old, single-colour red lamp despite the new
circuit. The old LED behaves upwards compatible in the new context.

3 The system model and di�erent composition classes

I focus on discrete systems which map their input in(t) and internal state q(t)
at time t in one time step t → t′ onto their output out(t′) and (new) internal
state q(t′) in one step: (q(t′), out(t′)) = f(q(t), in(t)).



In fact, there are many formalism to describe discrete systems and their
behaviour [15,3,32]. I use I/O-transition systems whose transitions map a start
state p and an input character i to a target state q and an output character o.
In my opinion, they are particularly suitable because of their possible coupling
by some �exchanged� character, representing information transport while their
transitions represent information processing3. They can also be used to show the
relationship of protocols to games [30,32] and to deduce an interesting model for
the �meaning� of the exchanged characters [33].

So, with the convention that ε is the empty character and for any alphabet
A, Aε = A ∪ {ε}, we describe the behaviour of such a discrete system with an
I/O-transition system (I/O-TS):

De�nition 2. An I/O-transition system A is de�ned as A = (Q, I,O,∆)A.
QA, IA and OA are alphabets, whereas only Q has to be non-empty. q0 ∈ Q is
the initial value and ∆A ⊆ Iε ×Oε ×Q×Q is the transition relation.

To fully represent a system function, the I/O-TS must be deterministic and
I must not be empty.

3.1 Homogenous or functional composition

Composing systems homogeneously means to compose (sub-) systems to (super-
) systems or the corresponding deterministic sub-I/O-TSs to a deterministic
super-I/O-TS. According to our schema to compose computable functionality,
we can distinguish between simple composition, comprising serial and parallel
composition, primary recursion and µ-recursion.

In parallel composition two systems work in parallel on a single input. We
therefore combine two deterministic I/O-TSs Atot = A1|A2 working on the same
input alphabet Itot = I1 = I2 and we get: Qtot = Q1 ×Q2, Otot = O1 ×O2 and
(i, (o1, o2), (p1, p2), (q1, q2)) ∈ ∆tot i� (i, o1, p1, q1) ∈ ∆1 and (i, o2, p2, q2) ∈ ∆2.

In sequential composition of two systems, the second of the corresponding
deterministic I/O-TSs A2 process the output of the �rst I/O-TS A1 and it must
hold O1 ⊆ I2. I then de�ne Atot = A2 ◦ A1 such that Itot = I1, Otot = O2,
Qtot = Q1 × Q2 and (i, o, (p1, p2), (q1, q2)) ∈ ∆tot i� there exists a character
c ∈ O1 such that (i, c, p1, q1) ∈ ∆1 and (c, o, p2, q2) ∈ ∆2.

For primary recursive composition of a system A to a recursive system Atot,
the input alphabet IA of the corresponding I/O-TS must consist of three com-
ponents IA = I1 × I2 × I3 with I2 = N and OA ⊆ I3. The recursion operator
creates the supersystem with IS = I1 × I2, OS = OA, QS = QA and the transi-

3 There are many interaction models based on transition systems with named transi-
tions, where the coupling of di�erent systems is achieved by identically (or comple-
mentarily) named transitions, e.g. [14,24].



tion relation ∆S with

((a, n), yn, p, q) ∈ ∆S ⇔ there exist characters yn−1, . . . , y0 ∈ OA such that

((a, n− 1, yn−1), yn, p, q) ∈ ∆A
and ((a, n− 2, yn−2), yn−1, p, q) ∈ ∆A
...

...

and ((a, 1, y0), y1, p, q) ∈ ∆A
and ((a, 0, ∗), y0, p, q) ∈ ∆A

µ-recursion works similar.

As every system comes with its own time scale, the time scale of the com-
posed system potentially di�ers from the time scale of its subsystems. Related to
that, the I/O-states that created the connections for sequential composition, and
the internal counting states, necessary for recursive composition, vanish in the
composed supersystem � in line with the notion that information is only trans-
ported between systems and is processed within systems. For our corresponding
I/O-TS this means that the composed I/O-TS does not contain the respective
alphabet components any longer. Thus, by homogenous composition, we �hide�
state which is relevant only for the composition itself.

To illustrate functional composition, Fig 1 shows a simple system composition
where three systems S1, S2, and S3 compose to a supersystem S with system
function fS(x) = 2x+5. System S2 contributes its system function fS2(x) = 2x,
S3 contributes fS3(x) = x+5, and S1 coordinates system S2 and S3 in three steps
in a non-trivial recursive manner. As we can easily see, there is no interaction
between the subsystems and their supersystem, but instead, the supersystem
is created by the deterministic interactions of the subsystems, and its interface
represents the function fS(x) = 2x+ 5.

A) B)

Fig. 1. Three systems S1, S2, and S3 compose to a supersystem S with the overall
(super)system function fS(x) = 2x + 5. The right part shows the ordering according
to their �is-part-of�-relation, represented by a �lled diamond and a solid line. There is
no information �ow between the layers.



This latter hierarchy is used in imperative programs and the object oriented
world with their method-construct. A method represents a function which � if
not elementary � depends on other methods. Thus, with methods we do not
follow an interaction-oriented interface concept, but a structur-oriented interface
concept, supporting the �is-part-of� relation. I propose to speak of a �unilateral�
interface, as it relates only to its own system and therefore is composable with
arbitrary other such interfaces within an appropriate hierarchical composition
context.

3.2 Inhomogeneous or protocol composition

But, systems can also be composed inhomogenously by the same mechanism of
�character exchange�. But unlike section 3.1, I now use the I/O-TS to represent
only parts of the systems in the sense of a projection. Thus, these I/O-TSs will
generally be non-deterministic. I call these system parts �roles�.

Due to space constraints, I can only sketch the proceeding here (for details
see [32]). Now the goal of the composition changes. It is not intended to create
a new I/O-TS with some external in- and output, but to compose all involved
roles Ri, each from a di�erent system, to create a closed transition system with
no external in- and output any longer, namely a �protocol� P � which obviously
does not represent a system in the original sense. For deterministic transition
systems no input would mean no possible transitions. Thus, the nondeterminism
of the roles is essential for this composition to make sense.

P = CProtR (R1, . . . ,Rn) (3)

Thereby the focus of the composition changes from the mere existence of a
(deterministic) transition relation towards a couple of properties, summarizable
as �consistency�, which directly relate to the execution of the protocol. Con-
sistency comprises to be well formed in the sense that all sent characters can
also be received. It also comprises to be interruptible which means that no in�-
nite interaction chains exist. And it comprise to �work as intended�. Aiming at
consistency, we therefore have to extend our I/O-TSs to I/O-automata with an
additional initial state q0 and an acceptance component F that represents an
additional local criterion for �works as intended�. Essentially, coupling the roles
to a protocol contrains the transition relation of the product transition system.

Leveraging the nondeterminism of the protocol roles, we can go a step further
and introduce �decisions� as an additional internal input alphabet which deter-
mines the transitions of the otherwise nondeterministic roles. Thus, we can say
that successfully taking part in a protocol implies knowing its rules and being
able to take (for example by calculation) the necessary decisions.

Due to the nondeterministic character of all protocol roles, both, the internal
state as well as the coupling I/O-states are inherent building blocks of the re-
sulting protocol and cannot be hidden by composition. What protocols do hide
is the calculation of the decisions. I propose to speak of a role as a �multilateral�
interface, as it has to be combined with its complementary other interfaces of
its protocol.



4 System architecture

4.1 Semantic layers

With the functional and the protocol composition, two di�erent compositions ex-
ist, which we can express two-dimensionally in a graphical system model, as Fig.
2 shows. The layers in the vertical direction represent the order by the �is-part-
of�-relation, created by functional composition. The horizontal direction relates
systems of the same layer through protocols. Importantly, in this representa-
tion, information is exchanged only between systems, that is in the horizontal
direction but not within systems, that is in the vertical direction. The system
boundaries are determined by the interactions and not by the suggestive power
of the ordering of some boxes.

Fig. 2. A layered IT system architecture. Remote object P logically belongs to process
A.

Why is it justi�ed to talk about �semantic� layers? This attribute results from
the model of information. Information is what is being transported between IT-
systems and its semantics is attributed by its processing [33]. Thus any hierarchy
of information processing implies a corresponding semantic hierachy.

It is clear that in a �nite-size IT system with layered structure there must
be a top layer. In order not to be part of a corresponding supersystem, the sys-
tem it contains must be �interactive� in the sense that it is involved in multiple
nondeterministic, stateful, asynchronous interactions � an activity I call �coordi-
nation� (see below). Other terms for such systems are �reactive systems� [12] or
�processes�. These top layer processes carry the �business semantics�.



The top layer processes can delegate all their reusable functionality to de-
pendent objects. This applies in particular to general recursive functions. Conse-
quentially, each layer is the place where the software engineer has to accumulate
the non-reusable aspects of the more concrete system logic. Conversely, an un-
clear layer structure can signi�cantly impair reuse, since then, software engineers
can only poorly separate the reusable from the non-reusable.

From our considerations, it immediately follows that protocols on higher
semantic layers are an essential tool for �programming in the large� [38], since
their roles demarcate complex, stateful IT- systems from one another.

4.2 Interaction oriented architecture

Perhaps the most interesting �nding of our investigation is, that building inter-
active IT systems, we are exposed to a tension between describing systems via
functions and being able to integrate these systems into the desired interaction
networks only via nondeterministic, stateful, and asynchronous interactions. If
we ignore this tension and describe interactive systems with an explicitly for-
mulated system function, then we unfortunately lose any guarantee that small
changes in individual interactions will result in correspondingly small changes in
the structure of the application.

This leads to the obvious requirement to �nd a balance by an �interaction-
oriented IT system architecture�. A hint in the right direction gives us the in-
homogeneity of the composition of roles to protocols of Eq. (3). Hence, for the
composition of (simple) protocols to (more complex) protocols, we have to look
for another composition rule, which again has to refer to roles. If we consider the
protocol composition as an �outer� composition, then the composition rule we
are looking for to link the roles within a system would be an �inner� composition
in the sense of a role coordination [32]. Building a system while preserving the
roles would have the consequence that the correctness of the implementation of
a protocol role is not a�ected by changes in other roles.

From a constructive point of view, the internal coordination of roles con-
strains the transition of their product automaton in the sense that each role
provides all the information at the right time such that the desired coordination
with all the other roles of the system can take place and the remaining nonde-
terminism is �lled by decisions. It's the nondeterminism of each role which plays
a major role for enabling a �exible inner coordination.

We thereby reach a reference architecture of interactive systems where a
system S is composed from all its roles Ri by a composition operator CSystemR
based on coordination rules and decisions.

S = CSystemR (R1, . . . ,Rn) (4)

5 Component models in the literature

According to Gerard J. Holzmann [16], the term software component was coined
at the 1968 NATO Conference on Software Engineering in Garmisch by Doug



McIlroy [23]. The tight relation between the component and the interface concept
makes this relation well suited for an evaluation of component models.

Hierarchically composing component models are meanwhile ubiquitous [7].
But what about support for horizontal interactions? In their overview of compo-
nent models, Ivica Crnkovic et al. [8] distinguish between �operation-based� and
�port-based� interface support, showing that many currently important compo-
nent models do not in fact support role declarations for protocol-based interac-
tions, like �implements role X of protocol y� at all.

5.1 Components as distributed objects

Distributed object models were developed under the idea that the encapsulation
of the internal state by a beforehand de�ned set of operations in the sense of
an abstract data type �hides� this state against the external world, providing
some �autonomy� and thereby achieving a �loose� coupling between IT systems
[5]. Examples are the Common Object Request Broker Architecture (CORBA),
the Distributed Component Object Model (DCOM) or also the Open Platform
Communications Uni�ed Architecture (OPC-UA).

However, according to our de�nition, only the compositional structure can
be hidden behind an object-oriented interface, but not the respective mapping.
Thus, from a logical perspective, remote objects become just a part of the �one
IT-system� as local objects do and there is no question of �loose coupling�. We
simply cannot reach out of a system by the call of an operation. And we cannot
� by de�nition � express horizontal relations with the interfaces of operations.

5.2 Service oriented architecture (SOA)

The idea of a SOA goes back to R.W. Schulte and Y. V. Natis of the Gartner
Group. [37]. OASIS de�nes a SOA quite unspeci�cally as a �paradigm for or-
ganising and utilising distributed capabilities that may be under the control of
di�erent ownership domains.� [25]. A �service� is de�ned as �The performance
of work (a function) by one for another.� and as a �mechanism by which needs
and capabilities are brought together�. A SOA is currently being propagated, for
example, for Industry 4.0 [10] or in NATO [1] (Vol. 2).

In fact, none of the service de�nitions address the transformation behaviour of
a �service�, such as whether it represents a function or not. The WSDL 1.1 spec-
i�cation [43] de�ned four �transmission primitives� called �operations�. WSDL
2.0 [44] in section 2.2.1 speaks of an �interface component� as a �sequences of
messages that a service sends and/or receives� and of an �operation� as an �in-
teraction with the service consisting of a set of (ordinary and fault) messages
exchanged between the service and the other parties involved in the interaction�.
Hence, according to our composition concept, SOA interfaces are not well-de�ned
(see also [31]) .

Applying these SOA-�concepts� to involve humans into processes leads to
functionalisation: people become task completers. This is nicely illustrated in the
WS-Task [26] speci�cation where a �task�, represented by a WSDL-operation, is



the basis �to the integration of human beings in service-oriented applications�.
The term �decision� does not appear a single time.

The naming as �service� makes mutual understanding with economists quite
di�cult because in economics a �service� does not represent itself as a simple
function, as the SOA with its WSDL interface syntax suggests. For example,
to get a wall painted in a newly built house, one has to solicit bids, accept
a bid, arrange and, if necessary, rearrange appointments, check the result, if
accepted, pay the bill, and �nally even keep the documents for tax declaration
� a relationship with the craftsmen at eye level, full of state, asynchrony, and
nondeterminism. It is precisely for this reason that economics describes these
interactions as games, which are � as we have seen � closely related to protocols.

5.3 Representational State Transfer (REST)

REST [11] can be seen as an attempt to apply the principles of stateless com-
munication along with semantic agnosticism � both principles of the highly suc-
cessful Hypertext Transfer Protocol (HTTP) � to network system interactions.
Currently, it is often positioned as a simpler variant of SOA.

A REST call is said to satisfy the principles of addressability, that each
resource must have a unique URI, and statelessness, that each REST message
should contain all the information necessary for the processing it initiates. Some-
times idempotence (e.g., [27]) is also mentioned, that a REST call should always
have the same e�ect regardless of its timing.

In some way, I think, REST rests on a misunderstanding of the role of state
in network system interactions. Computing functionality, state occurs only tran-
siently, but for coordination it is essential. For example, if I seriously apply the
idea to interact statelessly to my bank transfer, then the bank would not be
aware of my account balance. An interesting thought.

The actual transformational behaviour is explicitly not part of the semantics
of a REST interface, nor is any relationship between di�erent REST interfaces.
Accordingly, REST �interfaces� do not represent interfaces in the sense of this
article, but represent only a transport semantic.

5.4 Client server model

The client server model is usually not understood as a component model. How-
ever, it is an interaction model and as such client and server act as two compo-
nents. Thus the question arises, considering its practical relevance, what their
relationship constitutes in the sense of a component model.

At the beginning of the 1990s the client server model was understood as
a request/reply scheme [2,40]. With the emergence of SOA, the understanding
shifted to a division of the system function into �services� that are provided by
di�erent servers and could be used by a client [39].

The client-server model is also relevant in the context of database-based ap-
plications. There, engineers often talk of 2-tier, 3-tier, or multi-tier architecture



in terms of layering, where the database forms the bottom tier 1 and user inter-
action forms the top tier.

In terms of our model of systems and their interactions, client and server �rst
of all represent systems whose interaction let them fall into any of the di�erent
composition classes. The only signi�cant di�erence between client and server
is that between a caller and the called party � which is exactly what you �nd
looking at the speci�cation, for example, of the TCP/IP protocol (RFC 793,
7323), where the server waits at a TCP/IP port for calls from a client.

This criterion can indeed be used to declare an order. The only question is,
how meaningful it is. True, the division into caller vs. called does �t the semantic
direction of a remote operation call. But it would be a complete misunderstand-
ing, in my view, if we attribute the success and prevalence of the client-server
model to this �t.

Let's take a look at the so-called 3-tier architecture of modern enterprise
applications, consisting of database, application server and user interface (UI)
component. Its scalability has been one of the technological reasons for SAP's
business success: after the introduction of the R/3 system, which featured such
an architecture, SAP's per capita revenue rose from about 150,000¿ in 1992 to
250,000¿ in 2000, while the number of employees increased from about 3,000
to 20,000 in the same period. This development can only be understood, in my
view, by recognising that with a 3-tier architecture, there is � at least from an
interaction perspective � no layering, but 3 comparatively independent, stateful
applications, each representing its domain of expertise, coordinating multiple
non-deterministic, horizontal interactions.

6 Reference architectures in the literature

According to [22], a reference model is �an abstract framework for understand-
ing signi�cant relationships among the entities of some environment. It enables
the development of speci�c reference or concrete architectures using consistent
standards or speci�cations supporting that environment.�.

There exist many so called �reference architectures�, most of them provide
some model of layering. It is quite astonishing that, at least based on the ideas
presented in this work, many of them actually lack a consistent criterion for their
claimed layers.

6.1 The Open Systems Interconnection (OSI) model

One of the most in�uential reference models is certainly the Open Systems Inter-
connection (OSI) model [19] which every informatics student learns in her �rst
semester. It established the idea of a multi-layer software architecture. However,
the assumption �OSI is concerned with the exchange of information between open
systems (and not the internal functioning of each individual real open system).�
is inconsistent. One cannot make assertions about an information processing



system's internal structure, such as layering, while refraining from saying any-
thing about the structure of its information processing. Also, the OSI model
was not precise enough about the nature of the hierarchy. For example, the OSI
assumption that information processing between components by means of proto-
cols always takes place in the same layer proved to be false in the case of remote
function calls.

Thus, the system and interaction model of this article provides a formal
justi�cation for the intuition of the OSI model to consider software applications
as layered. However, it also explains at the same time why the OSI model has
found its way into reality only up to its 4th layer. The management of a �session�
state cannot be assigned to a dedicated layer in the general case. Only in the case
of vertical relation can the interaction-related state be hidden in a state of an
intermediate �session� layer. In the case of horizontal interaction, the interaction-
related state actually belongs to the components of the same semantic layer that
interact with each other.

6.2 The Level of Conceptual Interoperability Model (LCIM)

Another example of a more frequently referenced reference model (e.g. lately in
the IIC Connectivity Framework [17]) is the �Level of Conceptual Interoperability
Model (LCIM)� [41], which consists of the 7 alleged layers: no [interoperability],
technical, syntactic, semantic, pragmatic, dynamic, and conceptual interoper-
ability.

Obviously, it is not interaction that constitutes this hierarchy, but what else?
Even for the technical transport of information, e.g. by the Internet protocol,
a certain structure (=syntax) of the transported information is necessary. It is
unclear how to separate semantic from pragmatic aspects. For example, how
can the meaning of a bank transfer be described without referring to an action
that a bank should perform? In my view, �syntactic interoperability� is most
likely to mean mutual understanding at the level of data types, that is, that an
incoming document can be mapped to an internally used typed data structure.
In my understanding, this is already �semantics� and comes into play in every
protocol-based, horizontal interaction and is accordingly not limited to one level
of interaction.

6.3 The Reference Architecture Model Industry 4.0 (RAMI4.0)

A third example is the Reference Architecture Model Industry 4.0 (RAMI4.0)
[10]. At the centre of this model is the �asset� as an entity that is used in the
context of industrial production and has some value to an organisation. RAMI4.0
aims to structure the standardisation e�orts of the Plattform Industrie 4.0, a
network led by the German government to further develop and implement its
high-tech strategy in the �eld of industrial manufacturing, along the three axes
of: (1) architecture, (2) life cycle, and (3) hierarchy.

As noted in [36], on the one hand, no clear ordering criterion can be identi�ed
for the architecture axis and, on the other hand, the hierarchy axis is based on



an �is-part-of� relationship that is not conceptually independent of the architec-
ture axis. Also, the categories of the hierarchy axis are not mutually exclusive
� a company could also be a product, for example. Finally, the di�erent com-
positional mechanisms for interacting systems are not considered: A technical
system that is part of a company is so in a di�erent way than, say, a taillight is
part of a car.

7 Summary and outlook

With this article, I have tried to show that one important source of the current
vagueness of the concept of IT-system architecture is the seemingly unnoticed
vagueness of basic concepts like interface and component. In this sense it's a nice
example of the e�ect of an unknown unknown. Even though reference architec-
tures make heavily use of the concepts of horizontal vs. vertical system relations,
they nevertheless lack a clear enough understanding of them. And introducing
additional concepts like �service� or �architectural style� doesn't help very much
in this respect.

My proposal with this article is to use the composition notion and apply it
to the information processing of systems to sort things out. It is interesting to
see that we reach at virtually the same conclusions using a simple classi�cation
of interactions [35]. Composing systems requires us to refer to their mapping
relations they represent. If we use them completely we get functional or super-
system composition, and if we use them partially we get protocols. We get on
very slippery terrain it we refrain from using them at all. It was actually the
di�erent compositional behavior which motivated David Harel and Amir Pnueli
to distinguish between �transformational� and �reactive� systems [12].

We thereby reach at a decidable interface and component concept and actu-
ally at a very dynamic system concept. Systems are being created or destroyed
depending on the creation or destruction of a system function. The systems'
structure is nothing we determine by nice box drawings but it is the structure
of their system function, that is how it is composed out of its parts. And to
compose functions from parts is essentially what informatics is all about.

It's the composition concept that allows us to understand �rst, that discrete
systems interacting on an equal semantic level generally have to be interactive;
secondly, that creating interactive IT-systems poses a dilematic problem to the
engineer, which, thirdly, might be solved by an interaction-oriented architecture.

Why are clear interfaces are important? Because they demarque system
boundaries. Unclear system boundaries entail security risks. We can make a
virtue out of necessity by using security controls like signature and encryption
to enforce the demarcation of system boundaries. Thereby proper security be-
comes a testing probe for a good system architecture [4].

Beyond that, well-de�ned boundaries of systems being constructed are of
direct relevance for organising the constructing organisations. The presented
model suggests that the interaction structures of the constructed IT-systems
should shape the interaction structures of the organisations constructing them



[13] � the inverse of �Conway's Law�. The de�nition of vertical interfaces should
be a means to entrust departments with di�erently abstract topics, and the def-
inition of protocol-based interfaces should be a good instrument for structuring
larger software-developing organisations in departments with separate domains
of expertise.
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