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Abstract

In this article the forearm, with its complex, continuous motion of masses during pronation/supination, was approximated by
arigid body model consisting of a radial segment rotating around an ulnar segment. The method used to obtain the model parameters
is based on three-dimensional voxel data that include velocity information. We propose a criterion that allows the voxels to be
attributed to either of the two segments. It is based on the notion that the rotational kinetic energy determined from the voxel data
equals the kinetic energy of the rigid body model. To obtain a three-dimensional smoothing we further propose a parameterization of
the shape of both segments. These shapes can then be used to determine the dynamic integrals of the segments, i.e. mass, center of
mass, and inertia. Using this approach we determined all model parameters for a human forearm from three series of MRI scans in
a supinated, a pronated, and an intermediate position. In the appendix, a procedure is described that allows the dynamic quantities to
be scaled homogeneously without recalculation of the integrals. Thus, this article provides all essential parameters required for
three-dimensional dynamic simulations of general movements of the forearm. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The dynamic modelling of the human forearm, and the
pronation-supination (PS) movement, in particular, have
been treated less than adequately in the biomechanics
literature. Most authors thus far were concerned with the
kinematics rather than the dynamics of the PS of the
human forearm. An early extensive qualitative discussion
can be found in Fick (1911). The modern studies of this
subject have been motivated mostly by interest in the
development of forearm prostheses. Chao and Morrey
(1978) investigated the position of the rotational axes of
the forarm using an orthogonal X-ray technique. They
identified the axis of the flexion/extension (FE) of the
elbow as the center of the humeral trochlea and showed
that the ulna was fixed for the PS. Youm et al. (1979) used
an LED-technique to quantify the forearm motion. They
determined the PS-axis along the straight line between
the center of the proximal caput radii and the distal
center of the ulna; and the FE-axis as the center of the
humeral trochlea, independent on the rotation angle.

*Corresponding author. Tel: + 49-211-78160; fax: + 49-211-
784353.
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Robin et al. (1986) used a fast computed-tomography
technique to analyze the angle and the distance between
the ulna and radius during the PS, but they did not give
any data concerning the movements of the masses of the
forearm during the rotation. An et al. (1981) determined
several physiological parameters like moment arms, vol-
umes and physiological cross sections for the muscles
spanning the elbow. This investigation was supple-
mented by a study by Murray et al. (1995), who measured
the dependence of the moment arms of these muscles on
both the FE and the PS, and compared these data to
a kinematic model, based on finite-element bones of the
Viewpoint Company.

To our knowledge, in previous approaches to forearm
dynamics a single rigid segment was used that rotated
around two axes through the elbow joint (Hatze, 1980;
Winter, 1990; Nigg and Herzog, 1999). Peterson (1994)
presented a rigid body model of the arm, but he neither
gave any data concerning the dynamical parameters of
his model, nor mentioned the methods with which such
parameters were determined.

A single rigid body approximation is sufficient for
studies of arm kinematics, of moment equilibrium situ-
ations, and of pure flexion/extension. However, for gen-
eral dynamic simulations of arm movements, in
particular with rapid PS components, the inertia of the
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forearm must be modelled using at least two segments.
Otherwise, it is to be expected that the inertia and conse-
quently the torques related to the PS will be grossly
overestimated. Such a distinction between segments also
allows the effects of muscles between humerus and ulna to
be correctly modelled, as the ulna has only one degree of
freedom instead of two. Obviously, the effects of muscles
located between radius and ulna (M. pronator quadratus)
cannot be modelled without making such a distinction.

The aim of the present study was to develop a method
to approximate the continuum dynamics of the forearm
using two rigid bodies in such a way as (a) to obtain
reasonably accurate inertias for all kinds of movements
and (b) to estimate the accuracy of the resulting model.
Based on MRI scans (Martin et al., 1989), the forearm
was partitioned into two segments: an ulnar segment that
articulates with the humerus in the elbow joint in one
degree of freedom, and a radial segment that articulates
with the ulnar segment around the PS-axis. The resulting
kinematic and dynamic parameters of both segments of
the forearm (mass, center of mass, and inertia tensor) of
a young male adult are presented.

To extend the range of application of our data,
a method is required for scaling the presented forearm
parameters with respect to different forearm geometries.
To this purpose, in the appendix a linear scaling proced-
ure is described.

2. Methods
2.1. Recording of 3 series of MRI-scans

Our analysis was based on three series of t2-weighted
MRI-scans of the forearm of one 29 year old male sub-
ject. The subject gave his informed consent to the proced-
ure. The resolution of the MRI-scan was 0.55 mm in the
slice plane, i.e. 256 pixel of the MRI-scan corresponded
to 14 cm. Each series was limited to 22 slices 1 cm apart.
The skin was marked in order to put the elbow approx-
imately at the same position in each series. The scans
covered most of the forearm, approximately from the
radial tuberositas to the ulnar incisure. Series 1 was taken
in supinated, Series 3 in a pronated and Series 2 in an
intermediate position. The exact PS-angle of the posi-
tions was determined from the scans (see results).

To use the ulna as the common body of reference for
all three series, the longitudinal displacement was re-
duced further to less than 0.5 cm by omitting the first slice
of the supinated and intermediate series and the last slice
of the pronated series such that the remaining 21 success-
ive scans of each series had the best correspondence. The
transversal and rotational misalignments were mini-
mized by rotating and translating numerically the slices
of the supinated and pronated series based on a linear
longitudinal parametric fit.

Of the remaining 3 x 21 scans, every 4th one was se-
lected for further evaluation, resulting in 6 scans of each
series, 4 cm apart, renumbered 2, 6, ..., 22 from distal to
proximal. The resulting superposition of the six scans of
all three series is presented in Fig. 1

As the distance between the olecranon and the proces-
sus styloideus of the ulna (26 cm) exceeded the size of the
MRI coil for high-resolution scans (23 cm), it was not
possible to include the humero-ulnar and the radio-
carpal joint in the scans of the forearm. To determine the
points and axes of articulation between forearm, hu-
merus, and hand, it was therefore necessary to fit a bone
polygon set of the arm bones (Viewpoint Company) to
the bony surfaces determined in the 22 scans of the
supinated series. The joint axes of the bone polygon set
were determined by repeatedly fitting the shape, orienta-
tion, and position or rotational surfaces to the surfaces of
the trochlea and the ossa carpi of the bone polygon set
using a visually guided iterative procedure.

2.2. Quantifying the movement of the tissue

As an example, the movement of the forearm tissue
between slice 2 of the pronated series and slice 2 of the
intermediate series is shown in Fig. 2.

To quantify such movements, we approximated the
nonlinear mapping M; of the supinated onto the inter-
mediate series (i = 1) and the pronated onto the inter-
mediate series (i =2). This was done under visual
supervision by local rotation and translation of small
square areas of one slice of the supinated and pronated
series, respectively, onto the corresponding slice of the
intermediate series, so that characteristic local structures
were brought into congruence.

The x- and y-component of the mapping correspond-
ing to Fig. 2 are shown in Fig. 3. For small areas, where
no characteristic local structures could be found, the
mappings were interpolated by means of a two-dimen-
sional polynomial fit of third order.

The PS-axis was determined by fitting circles to the
joint surfaces of radius and ulna of the superpositioned
slices 2 and 22 of all 3 series. The intersections of the
PS-axis with the intermediate slices were calculated by
interpolation.

With the knowledge of the mappings M; of the tissue
and of the rotational axis, the local rotation of each voxel
Ao; = Aw; (x, v, z) relative to this axis could be calculated
for both mappings. x and y are the horizontal and verti-
cal coordinates in the slice planes, and z is measured in
the direction orthogonal to the slice planes. To determine
the rotational angles Ao} between the radius and the
ulna, only voxels representing bony tissue were used.

The PS-axis differed from the orthonormal of the slice
by a skew angle of 10.9°. Thus the mapping actually
relied on the assumption that the pixels belong to longi-
tudinal structures parallel to the PS-axis. The small angle
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Slice 2 Slice 6

Slice 10 Slice 14

Slice 18 Slice 22

Fig. 1. Superposition of the three MRI-series after translation and rotation of the supinated and pronated series so that the ulna remained invariant by
PS in all three series. Shown are the slices 2, 6, 10, 14, 18, and 22 in intervals of 4 cm. Slice 2 (distal) cuts the forearm slightly proximal to the tuberositas
radii. Slice 22 (proximal) cuts the forearm slightly distal to the incisura ulnaris of the radius.

error introduced by projecting the circular movement 2.3. Voxel-based partitioning into two distinct segments
under the skew angle was neglected. The effect of this
error could be estimated by the comparison of the results The partitioning of the forearm masses into a

of the partition by both mappings (see discussion). radial and an ulnar segment marks the transition from
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Fig. 2. Vector-plot of the mapping of slice 2 of the pronated series onto
slice 2 of the intermediate series.

a continuum to a rigid body model. The basic idea for
this partitioning was to postulate that the kinetic energy
(of a slow rotation around the PS-axis) of the continuum
case, which could be determined by the mappings, should
equal the kinetic energy of the rigid body case — still to
be determined.

This partitioning was done for both mapping separate-
ly, so that a comparison of the resulting two partitions
allowed an assessment of the soundness of the rigid body
assumption over a broad range of PS-angles.

In general, the rotational Kinetic energy E,;, of
a mechanical system is given by

1 1
Eyin = ZJ (wxr)*dm = 2J w?r? dm, (1)

where o is the angular velocity vector of the mass ele-
ment dm at the position r. ® is the magnitude of @, and
r, is the length of the perpendicular distance from r to
the axis. The origin of the coordinate system is placed on
the axis.

The distance & of the voxels to the axis was measured
in the slice planes. With f defined as the angle between
the slice planes and the PS-axis, £ = r, /(sin f8) holds true.
We assume that o is linearly related to the rotational
angle Ag, i.e. that o = Aa/At.
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Fig. 3. X-and Y-component of the mapping of slice 2 of the pronated
series onto slice 2 of the intermediate series before interpolation of the
areas without characteristic structures. The relative smoothness of the
mapping is demonstrated.

Now, E,, has to be calculated for the movement
determined by the mappings, i.e. with Ao = Aa(x, y, z)
depending on the voxel position. In contrast, in a true
rigid body all Aa were identical for a single segment, i.e.
Ao = Ao® for the radial and Ao = 0 for the ulnar seg-
ment. As most of the tissue will move less than the angle
of the radial bone A«®, the assumption that a voxel of the
soft tissue belongs to the radial segment will in general
overestimate its kinetic energy. The overestimation can
be compensated by attributing only a fraction of the soft
tissue to the radial segment. It seems sound to select only
those parts which contribute most to the kinetic energy
of the radial segment. Thus the requirement that the
kinetic energies of the continuum and of the rigid body
case should be equal provides an implicit equation for the
unknown cut-off value g ¢ Of the individual contribu-
tion of each voxel to the kinetic energy.

More formally, this is written as follows:

cont. | radial seg.
Ekin = Ekin (2)

or

1 Ao(x,y,2)\ 2 & \?
2£orearm< At > <Sin ﬁ) P v
1 AOCO 2 é 2
= 5J\radial seg.<ﬂ> <m> P av. (3)
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The common factor p/2(Atsin ff)* of both sides can be
eliminated. The resulting terms are proportional to
E;, and were denoted as G°°™ and G™%*! *°&: Writing
the integrals as sums over the voxel data this reads

all voxels

Gcom. c= Z gk(ék’ A(xk = AOC(X, Y, Z))s
k
. gk > geut ot
Gradlal seg.. Z gk(ék:Aak = AOCO) (4)

k

with the index k indicating the voxels. The contribution
of the kth voxel to G is defined as g, := (Awg)?>E2. This
resulted in a dependence of G™%# ¢ on the cut-off
value, i.e. Grdial see. — Gradial seg. (1) and Geurore WAS
given implicitly by condition

Gcont. =' Gradial seg.‘ (5)

2.3.1. Comparison of the two mappings

Actually, the resulting g;, G and g.u..¢ depended on
the mapping M;. The difference between G; and
G, should allow for a consistency check of the partition
of the forearm and, therefore, of the description of the PS
by a model of rigid bodies.

If both partitions were identical, the following relation
would hold true:

Aal 2
G, = (M) G,. (6)

Actually, the measured value of G; was only 5.8% larger
than (Aog /A03)* G,.

2.3.2. Parameterization of the partition

In order to minimize the discretization error and to
obtain a unique model of the forearm, we propose a para-
meterization of the surfaces of both voxel-based parti-
tions. This parameterization description was then used in
a numerical Monte-Carlo-integration procedure to cal-
culate the relevant integrals.

The surface ¢ of the forearm of series 2 was explicitly
parameterized by a family of rotated and deformed
ellipses

&=1¢(0,2)

_< px> ( cosa sinoc) <(cos(5) +£|cos(5)|)ax>
B <py o sino cosa/: sin(d)a, )’

(7)

where d € [0, 360°] and ze [0.5, 26.5]. The integer values
of z corresponded to the slice index. The parameters p,,
py» Ay, a,, o, and ¢ depended on z, and were determined
for the slices 2, 6, ..., 22 of the intermediate series and
fitted by second-order polynomials.

For the parameterization of the intersegmental border
an implicit approach was used. We defined an auxiliary
function @ = @ (x, y, z2),

1

1
X Cl/x
‘( > —q1(2) ‘( > —q2(2)
y y

where (x, y) measured the directions in the plane of the
slices, ze[0.5, 26.5], q; corresponded to the PS-axis, and
q, ran parallel to that. Each position r with a @ (x, y, z)
larger than a @ ¢ (z) — still to be determined — was
defined as belonging to the radial segment. The parti-
tion-parameter @ ¢ (z) was found for the slices 2, 6,
..., 22 by the requirement, that the masses of the seg-
ments resulting from the voxel-based partition should
equal those from the model-based partition.

Voxels with @ > @, s could be identified only in
slices with an index i < 14. As an approximation of
the function @, (2) a rational function with a pole at
z = 18 was therefore fitted to the data of both mappings.

The difference of the number of voxels with
® > d_,, ¢, as a measure for the range of validity of the
method, was 4.6% between the two mappings. The differ-
ence of the number of voxels between the parameterized
model and the voxel-based criterion, i.e. the fraction of
voxels that were placed in the opposite segment because
of the parameterization, was less than 6.8% for both
mappings.

The voxel and model-based partitions as well as
the parameterization of the surface of the forearm for
the slices 2, 6, ..., 22 resulting from the mapping M, are
shown in Fig. 4.

P(x,y,2) = ; )

2.4. Defining and referencing the coordinate systems

To relate the quantities of the ulna and radius to the
other segments of the kinematic chain of the arm, i.e. the
upper arm and the hand, the coordinates and direction of
the elbow joint axis and the center of rotation of the
hand-joint axis have to be known.

In defining an anatomical coordinate system, one has
to decide whether to use bony landmarks, which would
simplify the determination of the coordinate system in
vivo, or rotational axes and joint centers, which would
simplify its usage in a computer model. Because of our
interest in this study to provide data for numerical simu-
lations of the PS, we opted for the functional approach
and defined the anatomical coordinate systems as follows
(cf. Chadwick et al., 1996):

Ulna:
Origin: center of the trochlea
Z-axis: defined by the origin and the center of the

(distal) ulnar head.
The direction is from distal to proximal
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Slice 2 Slice 6

Slice 10 Slice 14

Slice 18 Slice 22

E

Fig. 4. Segmental partitioning of the forearm with the mapping of the pronated onto the intermediate series. The irregular border in the slices 2, 6, 10,
and 14 result from the voxel-based partition of the segments. The smooth curves represent the parameterized surface of the forearm and the
parameterized partition of both segments corresponding to Eq. (7) and (8) with the respective @, ofs-

X-axis: orthogonal to the z-axis and in the plane Radius:
defined by the z-axis and the axis of the Origin: center of the capitulum
trochlea. The direction is towards the Z-axis: defined by the origin and the center of the
radius. scaphoid contact surface of the distal radius.

y-axis: z-axis X x-axis The direction is from distal to proximal
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X-axis: orthogonal to the z-axis and in the plane
defined by the z-axis and the PS-axis i.e.
the axis defined by the origin of the radial
coordinate system and the center of the
distal ulna. The direction is defined so that
the scalar product between the x- and the
PS-axis is negative

y-axis: z-axis X x-axis

Hand:

Origin: rotational center of the radial-hand joint

3. Results

3.1. Dynamic and kinematic parameters of a male forearm

The angle between the z—x-planes of the ulna and
radius was 79.5° for the intermediate position. The angles
between the ulna and radius in the supinated and
pronated  position was Ao = — 44.8 + 2.4°and
Ao =70.5 + 1.2°, respectively.

In Table 1, we present the data resulting from the
evaluation of the parameterized model for the arm
studied in this article. As density of the forearm we
assumed 1.14 g/cm (Drillis and Contini, 1966; Contini,
1972; Winter, 1990). The center of masses and the nor-
malized principal axes of the inertia tensor of each seg-
ment are given with respect to the respective anatomical
coordinate system.

The kinematic connection between the segments is
established by giving the origin of the distal segment in
coordinates of the proximal segment, i.e. giving the radial
origin in ulnar and the hand origin in radial coordinates.

Radial origin: (0.0213, 0.0017, — 0.0170),.

Hand origin: ( — 0.0036, 0.0006, — 0.2611),,4.

The direction of the axis between the radial and linar
segment is given with respect to both the ulnar and the
radial anatomical coordinate system.

Radial-ulnar-axis: (0.0889, 0.0070, 0.9960),,, = (0.0829,
0.0000, 0.9966),,4.

Table 1

In order to be able to apply our results to other
subjects as well, in the appendix we describe a simple
method for scaling the integrals linearly and in the direc-
tion of the axes. Such scaling will give reasonable results
if the ratio of circumferences of the forearm at wrist and
elbow to the distance between the proc. Styloideus radii
and the olecranon are close to the measurements of the
forearm in this study, which were 17.5cm: 26.5cm:
26 cm.

4. Discussion
4.1. Discussion of the errors

The errors that possibly contributed to the differences
between the two voxel-based partitions were numerous.
They included magnetic field inhomogenities, deforma-
tion of the arm because of its placement in a cushion,
eventual movements of the arm during recording, the
discrete nature of the mapping, the suppositions for the
rotational movement, and inaccuracies in the determina-
tion of the PS-axis. However, the error of the mass of the
radial segment can be estimated by the 4.6% difference
between the number of voxels that were attributed to it
by either mapping. Correspondingly, the 5.8% difference
between the weighted G-values is a direct estimation for
the error of the component of the inertia tensor in the
direction of the PS-axis. These small differences show
that within a range of 44.9° + 70.5° = 115.5°, our rigid
body model represents a good approximation for the PS.

An additional error is made by the parameterization.
Because of the parameterization, 6.8% of the radial seg-
ment voxels that were a result of the voxel-based parti-
tion were attributed to the ulnar segment and vice versa.
However, it can be expected that smoothing the voxel-
based partition’s rough borders, which where at least
partly the result of the discrete mapping process, would
rather reduce the error of the voxel-based partition in the
sense of a regression. Last but not least, because of the

Integrals of the dynamic quantities, i.e. mass, center of mass and inertia tensor, resulting from the evaluation of the parameterized model for the arm
studied in this article. The center of mass and the normalized principal axes of the inertia tensors of each segment are given in the respective anatomical

coordinate system

Ulnar segment

Radial segment

Mass (kg) 0.970
Center of mass (m)

Normalized principal axes of the inertia tensors 0.9971

0.0319

— 0.0696

Length of the principal axes of the inertia tensors (kg m?)

(0.0050, 0.0075, — 0.0951)

—0.0355 0.0679 0.9683
0.9981 0.0535 0.2231 0.9728
—0.0511 0.9963

(4.211, 4.373, 0.6741) x 1073

0.205
(0.0116, 0.0033, — 0.1881)

—0.2139 0.1293
—0.0617
—0.1126  0.0886 0.9897

(3.598, 3.323, 0.6175) x 10~
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smoothness of G as function of the cut-off value, such
erroneous attribution results in a much smaller error for
the kinetic energy.

We therefore estimate the error value for the inte-
grals evaluated by the Monte-Carlo-integration of
the parameterization of the forearm to be approximately
5%.

Another source of error was the impossibility of re-
cording the elbow joint in the MRI-scans. The repeated
fitting of the bony surfaces of the MRI-data onto a
commercial bone polygon set to augment the geometrical
data resulted in a standard deviation of 5° for the
direction of the axis of the trochlea. The resulting error
for the size of the main axes of the inertia tensor is
negligible because of its high degeneracy in the x- and
y-direction.

One flaw of this study could have resulted from the
method of using the kinetic energy of a slowly rotating
body to determine its dynamic integrals, which in turn
are to be used in simulations of accelerated fast move-
ments. If the shear modulus of the forearm were low, i.e. if
the forearm tissue were very elastic, this would be indeed
the case. Then radial torques within the physiologic
range would elicit large local displacements without
much effect on neighboring structures because of low
shearing forces. Consequently, the movement angle Ao of
a voxel would not be a unique function of the angle of
rotation of the bony radius Aa® as is assumed in this
study, but would also depend on the angular velocity and
acceleration. Fortunately, the anatomy of the forearm
supports the contrary. As we have shown, the rotational
component of the tissue movement is by far the most
dominating component. The incompressibility of the tis-
sue, together with the longitudinal structures that keep
the anatomy in place during fast PS, e.g. the interossea
membrane, guarantee that the dependence of Ax on
angular velocity and acceleration can safely be neglected
even for accelerated fast movements (within the physio-
logic range).

4.2. Discussion of the results

The construction of our forearm model is based on
a number of assumptions: constant density of tissue,
relevance of kinetic energy for the partitioning of body
masses, and a fixed rotational axis in both the radial and
the ulnar coordinate systems. As there is only one axis
between the radial and the ulnar segment, it seems rea-
sonable to choose this axis as the symmetry axis for the
border surface of the two bodies. This would facilitate
constructing a physical model of both segments such that
they would not penetrate each other during rotation.
However, such restriction would have resulted in an
anatomically incorrect representation of the shape of the
articulations between ulna and radius. At the elbow, the
rotation of tissue takes place around the caput radii, i.e.

the articulation surface of the ulna is concave, while at
the wrist the rotation takes place around the distal caput
ulnae, i.e. the articulation surface of the ulna is convex.
Consequently, the sign of the curvature of the border
surface changes between wrist (cf. Fig. 4, slice 2) and
elbow (cf. Fig. 4, slice 14). We therefore decided to respect
the anatomy rather than to aim at a simple physical
model.

It should be noted that for dynamic simulation the
actual shapes of the simulated bodies are irrelevant be-
cause they do not appear in the differential equations of
movement. As any inertia tensors could be produced by
an infinite number of mass arrangements, a physical
model of the forearm that would not interface with rota-
tion can nevertheless be build on the basis of our dynam-
ical parameters.

As we have shown, the mass between the radial and
ulnar segment is ca. 1:4.5, whereas the relation between
their inertia-tensors is ca. 1:11. It is obvious from these
numbers that an approach that merges radius and ulna
into a single segment rotating around the longitudinal
axis would considerably overestimate the inertia during
PS.

Furthermore, our study underlines the predominance
of hand inertia in comparison to forearm inertia during
PS movements. Hatze (1982) cites an inertia for a rota-
tion of the hand around its long axis (for a male adult
subject) as being approximately twice the value that we
arrived at for the radial segment. Consequently, at least
two thirds of the kinetic energy of the PS (depending on
hand orientation) are stored in the hand. The inertia
of the hand for a PS can be minimized by locating the
center of mass onto the rotational axis, i.e. by a small
abduction of the hand. Such abduction can actually be
observed as a spontaneous adjustment which people
show if they are asked to pronate/supinate as fast as
possible. On the other hand, it can also be inferred that
the radial inertia is still too large to justify a total neglect-
ion in any arm movements with an appreciable PS com-
ponent.

If the data are used for simulations of arm movements
in three dimensions, another property of the inertia ten-
sors should be noted. In both tensors the principal axis in
the longitudinal direction is smaller than the principal
axes in the transversal direction by a factor of ca. 6, while
the transversal axes are quite similar. Hence, when the
principal axes are used to define a new coordinate sys-
tem, as is often done to accelerate dynamical simulations,
the coordinate system could be rotated arbitrarily
around this longitudinal axis, resulting in only small
errors.

Future developments might use new techniques in the
area of fast elastic alignment (Schormann et al., 1996) to
automize the matching process, or could determine the
velocity fields that are necessary to determine the kinetic
energy for the partition in vivo by cine phase contrast
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MRI, as was done by Sheehan et al. (1998) for the knee
joint.

In summary, this study may be seen from two view-
points. From a model builders’ perspective it presents an
interesting way to adapt (and evaluate) a rigid body
model to a problem of continuum mechanics. It would be
desirable for this method to be applied to other parts of
the body that are similarly hard to parameterize, such as
the shoulder region. From the perspective of someone
who wants to simulate arm movements, this study pro-
vides the necessary data for the numerical calculation of
arm dynamics.
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Appendix A. Scaling along the ulnar axes

If a scaling between two different bodies B and B’ in
the same coordinate system is performed along the
coordinate axes, the dynamic parameters of both bodies,
i.e. the masses m and m?/, the center of masses r,,,, and r;,,
and the moments of inertia J and J’ obey some simple
rules.

In general, the assumption of a linear relationship
between both bodies implies that each vector r’, of the
body B’ is related to a vector r of the body B by a con-
stant 3 x 3 Matrix E

r = Er. (A.1)

Therefore, given m, r.,,, and ,J, m’, r.,,, and J’ result from
cm cm

m = J dm' = J‘ |[E|dm = |E|m, (A.2)
v’ 14
o Er|E
Y.L 12, T (A3
m |Ejm
J/ — J\ r/2|3 _ l‘/l‘/Tdm',
-
= j r'E"Erl; — Err"ET|E|dm. (A4)
.

As E is not unitarian, i.e. E-* # E7, the inertia tensor
does not transform as J' = EJE™. Instead, Eq. (A.4) has to
be evaluated directly.

If the scaling is performed only along the coordinate
axis of the bodies, i.e. when E is diagonal, all components
of J’ can be expressed in terms of the components of J. In
this case the determinant is

[E| = e11e22€33. (A.5)
The nondiagonal elements are given by

J'12 =J51 = er1ex|ElJy,,

J'y3 =J'31 = erres3[ElJys,

Jaz=Js, = e22e33|ElJ 13, (A.6)

and the diagonal elements by

J'11
J/22 =
J'33
E €3, + €33 —e3y +e33 e3 —eds) [Jin
L2| —6%1 + ‘3%3 e%l +e§3 5%1 —‘3%3 Jas )
—efy +e3 etr —e3, etr + €35 \Jss
(A.7)
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