A logical perspective on (finite) software systems and their composition

Johannes Reich, johannes.reich@sophoscape.de

2012-12-15

System

Systems - Informally

Finite Systems - Formal Definition

A finite system is defined by a tuple S = (T, succ, Q, I, O, x, in, out, f).

- *T* is the enumerable set of time values starting with 0 such that succ : *T* → *T* is the invertible time successor function.
- Q, I and O are the finite sets of state values for the internal, input and output states (x, in, out) : T → (Q, I, O^e).
- f = (f^{ext}, f^{int}) : I × Q → O^ε × Q is a function describing the time evolution or system operation triggered by an update of its input parameters and updating the internal and output state in one time step for each t ∈ T:

$$\binom{out(t+1)}{x(t+1)} = \binom{f^{ext}(in(t), x(t))}{f^{int}(in(t), x(t))}.$$

 ϵ symbolizes the empty character and $I^{\epsilon} = I \cup \epsilon$ and $O^{\epsilon} = O \cup \epsilon$. The *n*-fold application of *succ* is written as $t +_{S} n := succ_{S}^{n}(t)$

Johannes Reich ()

A logical perspective...

Systems

System Composition/Super System Formation

Sequential Composition $(S_2 \circ S_1)$

Parallel composition $(\mathcal{S}_2||\mathcal{S}_1)$

Combined System Composition

The right distribution law holds: $(\mathcal{P}_1 || \mathcal{P}_2) \circ \mathcal{S} = (\mathcal{P}_1 \circ \mathcal{S}) || (\mathcal{P}_2 \circ \mathcal{S})$

Richer Interaction Semantics

Deterministically Interacting Finite Systems and Supersystem Formation

Proposition: Let S and U be two systems described by DFIOAs D and \mathcal{B} respectively. \mathcal{U} interacts with S only by the consistent protocol $\mathcal{P}(\mathcal{A}, \mathcal{B})$ with a set of final states as acceptance component, where \mathcal{A} is an NFIOA describing only a projection of S. S additionally interacts with other systems, denoted by $\sim \mathcal{U}$, by other consistent protocols. Then S and \mathcal{U} are subsystems of a larger system \mathcal{T} .

Recursive System Relations

System U1 int fac1(int i) { if (i==0) return 1; else return i*fac2(i-1); }

System \mathcal{U}_2

```
int fac2(int i) {
    if (i==0)
        return 1;
    else
        return i*fac1(i-1);
}
```

Summary

The effect of system interaction on system composition can be classified as:

- Parallel processing or strict sequential interaction results in strictly hierarchical super system formation
- Deterministic bidirectional interactions together with certain consistency conditions result in (recursive) super system formation
- Nondeterministic bidirectional interactions together with certain consistency conditions results in provably no super system formation
- further, non-classified relations.

Literature:

J. Reich (2010), Finite system composition and interaction, in Klaus-Peter Fähnrich, Bogdan Franczyk (Eds), GI Lecture Notes in Informatics, Proceedings of the 40. Annual Conference of the dt. Gesellschaft für Informatik 2010 in Leipzig, Vol. 2, pp. 624-637.

Any questions?

Johannes.Reich@sophoscape.de