A logical perspective on (finite) software systems and their composition

Johannes Reich, johannes.reich@sophoscape.de

2012-12-15
Systems - Informally

- Systems
- Informally

Johannes Reich

A logical perspective...

2012-12-15 2 / 10
A **finite system** is defined by a tuple \(S = (T, \text{succ}, Q, I, O, x, \text{in}, \text{out}, f) \).

- \(T \) is the enumerable set of time values starting with 0 such that \(\text{succ} : T \rightarrow T \) is the invertible time successor function.
- \(Q, I \) and \(O \) are the finite sets of state values for the internal, input and output states \((x, \text{in}, \text{out}) : T \rightarrow (Q, I, O^\epsilon)\).
- \(f = (f^\text{ext}, f^\text{int}) : I \times Q \rightarrow O^\epsilon \times Q \) is a function describing the time evolution or system operation triggered by an update of its input parameters and updating the internal and output state in one time step for each \(t \in T \):
 \[
 \begin{pmatrix}
 \text{out}(t+1) \\
 x(t+1)
 \end{pmatrix} =
 \begin{pmatrix}
 f^\text{ext}(\text{in}(t), x(t)) \\
 f^\text{int}(\text{in}(t), x(t))
 \end{pmatrix}.
 \]

\(\epsilon \) symbolizes the empty character and \(I^\epsilon = I \cup \epsilon \) and \(O^\epsilon = O \cup \epsilon \).

The \(n \)-fold application of \(\text{succ} \) is written as \(t +_S n := \text{succ}^n_S(t) \).
System Composition/Super System Formation

Sequential Composition \((S_2 \circ S_1)\)

Parallel composition \((S_2 || S_1)\)
The right distribution law holds: \((P_1 || P_2) \circ S = (P_1 \circ S) || (P_2 \circ S)\)
Richer Interaction Semantics

"Interaction-Diagramm"

System 1 \(\rightarrow\) System 2

Message \(n_1, n_2, \ldots\)

Message \(m_1, m_2, \ldots\)

System 1

System 2

System 3

System 1 \(\rightarrow\) System 2

System 1

System 2

System 1_2

...
Proposition: Let S and U be two systems described by DFIOAs \mathcal{D} and \mathcal{B} respectively. U interacts with S only by the consistent protocol $\mathcal{P}(\mathcal{A}, \mathcal{B})$ with a set of final states as acceptance component, where \mathcal{A} is an NFIOA describing only a projection of S. S additionally interacts with other systems, denoted by $\sim U$, by other consistent protocols. Then S and U are subsystems of a larger system \mathcal{T}.
Recursive System Relations

System \mathcal{U}_1

```c
int fac1(int i) {
    if (i==0)
        return 1;
    else
        return i*fac2(i-1);
}
```

System \mathcal{U}_2

```c
int fac2(int i) {
    if (i==0)
        return 1;
    else
        return i*fac1(i-1);
}
```
Summary

The effect of system interaction on system composition can be classified as:

- Parallel processing or strict sequential interaction results in strictly hierarchical super system formation
- Deterministic bidirectional interactions together with certain consistency conditions result in (recursive) super system formation
- Nondeterministic bidirectional interactions together with certain consistency conditions results in provably no super system formation
- further, non-classified relations.

Literature:
Thank You!

Any questions?

Johannes.Reich@sophoscape.de