
Modelling the interaction of distributed systems as protocols

Johannes Reich
johannes.reich@sophoscape.org∗

Abstract

In descriptions of loosely coupled process-like interac-
tions of computational systems and especially in the liter-
ature on electronic business processes, the protocol notion
is often used only informally. However, its complete expres-
sive power becomes effective only with a precise formaliza-
tion. Based on Holzmann’s protocol concept, a formal pro-
tocol definition is introduced, providing an inductive defini-
tion of the protocol transition relation. The protocol tran-
sition relation describes all possible interactions between
system components which are formally specified as nonde-
terministic extended finite input output automata.

The formal approach is illustrated by means of a buy-
ing selling business interaction. Additionally, it is used to
illustrate some semantic shortcomings of the “transaction
pattern” approach, which tries to partition process-like in-
teractions into one- and two-way interactions.

In the discussion, the “loose” aspect of a protocol based
interaction is treated. Motivated by the non-functional sys-
tem relation defined by a protocol, it is proposed to clas-
sify the exchanged information between systems according
to their logical relation in documents for (nondeterministic)
protocols and I/O parameters for remote function calls.

1 Introduction

In the last couple of years, the scientific interest in
process-like interactions of computer systems has taken an
unprecedented upsurge. A wide variety of different ap-
proaches and techniques have been developed: Among oth-
ers are Petri nets [e.g. 21, 6], event-driven process chains
[e.g. 14], speech acts/transaction pattern [e.g. 1, 27, 22], al-
gebraic process descriptions [e.g. 18, 17, 10], distributed
algorithms [e.g. 15, 16], abstract state machines [e.g. 9, 4],
persistent Turing machines/interactive transition systems

∗published as J. Reich (2008). Modelling the interaction of distributed
systems as protocols. Proceedings of the MCETECH 2008, pp. 16-24.

[29, 8], extended I/O automata [e.g. 15, 11], agents [e.g.
12], dedicated process description languages [e.g. 2, 13],
and finally protocols [e.g. 24, 31, 11].

Petri nets had been introduced by C.A. Petri [21] to de-
scribe asynchronous information flow in analogy to phys-
ical flow, determined by conservation laws. Although his
basic assumption turned out to be false as the essence of in-
formation is its fugacity, Petri nets have been studied and
extended in great detail [e.g. 6, for an overview]. However,
in [11, p.185] Holzmann says that “Petri Nets do not give us
an advantage in the study of protocol design and validation
problems”.

The attempt to describe business processes as so called
”event-driven process chains” [14] has been proven to be
difficult to formalize due to semantic ambiguities [28].

Another attempt to describe process-like interactions on
a business level currently favoured by UN/CEFACT [e.g.
27] and adapted by industry consortia like RosettaNet [22]
is based on the notion of ”transaction patterns”. This at-
tempt is conceptually based on Searle’s theory of speech
acts [1] and partitions each process into one or two way
interactions. However, as I will show with the extended au-
tomata model, the semantics of these “transaction patterns”
cannot be defined exclusively with respect to the referred
one- or two-way interactions as intended.

Quite influential have been the algebraic approaches to
characterized processes [e.g. 18, 17, 10]. In a process al-
gebra, processes are represented by algebraic terms subject
to a set of relations. However, depending on the set of re-
lations, the possible mathematical structures fulfilling the
relations are only more or less restricted, but usually not
uniquely defined. Thus, an algebraic representation cap-
tures ”process” semantics only to the extend as it guided
the designers of the relations to express his intended seman-
tics formally. As long as no concrete structure in a model
theoretic sense is universally accepted as characterizing a
process, it could well be, that someone comes up with a pro-
cess structure, which is not covered by any current process
algebra. Also, some concrete structure might fulfill such an



axiomatizing, but nevertheless everybody might agree, that
this is definitively not a process structure.

Hoare [10, p.2] for example uses the term ’process’ “to
stand for the behaviour pattern of an object, insofar as it can
be described in terms of the limited set of events selected as
its alphabet”. However, Hoare use the name of the events as
labels for arrows between nodes, relating his events more to
actions in the sense of state transitions, instead of the rele-
vant I/O. Milner [17] bases his π-calculus on the concept
of named channels or specified addresses, trying to treat
data access and communication as the same thing. Since
names take in some sense the role of send and receive ac-
tions, the notion of names and co-names evolve. Again,
Milner takes the view, that a message always consists of an
operator and possibly of some value [5], with corresponding
consequences for the design of process languages, directly
or indirectly influenced by his theory [e.g. 30, 2, 13]. Thus,
in contrast to the advocated viewpoint of this article, at least
these well known process calculi of Hoare and Milner rest
on the assumption that interaction should be described by
named operations.

The interesting theory of distributed algorithms [e.g. 16]
tries to approach the description of distributed systems with
algorithmic means, enhanced by constructs to encompass
the parallel nature of distributed computing.

What is the reason to propose yet another formalism to
describe the interactions of distributed systems? First of all,
the protocol concept as a description of (informational) sys-
tem interaction is not new. According to Holzmann [e.g.
11], R.A. Scantlebury and K.A. Bartlett [24] have intro-
duced the term "protocol" in 1967 to denote a process like
data exchange. Indeed, many of the cited authors use the
term “protocol” informally to denote the interaction of sys-
tems, but do not give or relate to a formal definition.

However, being rule-based interaction specifications,
protocols may be much more than just “another formalism”.
In the well known OSI Reference Model [31], functional in-
terfaces describe a hierarchical, directional cooperation be-
tween systems and their subsystems, creating formally iden-
tifiable software layers within a program (if applied only
one-directionally), while protocols describe the interaction
of systems on a single abstraction level and can therefore be
attributed to a single software layer. Thus, the OSI model
basic paradigm is that protocols are well suited to denote a
different class of system relation than the conventional func-
tional relations, usually described by interfaces with oper-
ations. Actually, starting with the OSI paradigm, graphics
protocols like X [20] show another OSI assumption to be
false, namely that GUI and application should cooperate in
a functional way. Quite in contrast, due to the many impon-
derables GUI and application are exposed to, protocol like
peer-to-peer interactions between both have been proven to
be by far superior.

With protocols we are able to provide a complete set of
formal rules that govern the behavior of all participants in a
process-like interaction. Such a formal description is a pre-
requisite for any formal verification technique, comprising
validation as the consistency check of the protocol specifi-
cation itself as well as conformance as the equivalence of
the behavior of a given protocol implementation to its for-
mal specification.

Thus, all fields of computer science where peer-to-peer
interactions play a dominate role profit enormously from
formal protocol specifications. To name just two: first, the
emerging field of agent based software engineering [e.g.
12], which views computer systems as autonomous sys-
tems, interacting in a multitude of ways with other systems
on a single abstraction level; and second, enterprise soft-
ware where the execution of electronic business interactions
on a peer-to-peer level becomes more and more prominent
such that large software vendors already see it as strate-
gically important to position their solutions as a operating
system for business processes or business process platform
[e.g. 23].

Since protocols explicitly describe the interaction of sys-
tems, they have to rely on system descriptions from an - ex-
ternal - interaction point of view. Holzmann uses extended
I/O automata as means to describe the participating systems
for this purpose. These automata are similar to Gurevich’s
[9] concept of abstract state machines or the interactive tran-
sition systems of Goldin, Smolka and Wegener [8]. The
differences will be discussed later on.

In the following, based on a system description of ex-
tended I/O automata, a formal protocol definition will be
given, where the definition of the protocol transition rela-
tion is inductively constructed. Subsequently, the formal
approach is illustrated by means of a buying selling business
collaboration. Additionally, as an example of the explana-
tory power of the protocol notion, the “transaction pattern”
approach to describe process-like interactions with isolated
one- and two-way interactions is shown not to adequately
capture the interaction semantics as is described by proto-
cols. In the discussion, the nondeterministic aspects of a
protocol based system relation and the fact, that a proto-
col specification usually only relates to a (small) subset of
a system’s states are subsumed under the headline of “loose
coupling”. Also, it is argued that the semantics of the entity
“document”, which seems to play a principle part in con-
ventional business processes, stem from its usage within
process-like (business) interactions. Thus, it is not to be
expected that electronic based process-like business inter-
actions following the same model can do without such enti-
ties.



2 Protocols

Our starting point is that of agent based software engi-
neering [12] were information systems interact with many
other information systems on a single layer of abstraction
or peer-to-peer. To describe a particular interaction, we
therefore have to focus our system view to those parts,
which are necessary for the description of this particular
interaction, in other words a system projection. Within
the protocol concept, such an interaction view of a system
is specified by a nondeterministic extended finite I/O
automaton (NEFIOA) [e.g. 11, 3, 15].

Definition 2.1: A nondeterministic, extended finite I/O au-
tomaton is defined byA = (Q, I, O, q0, ∆, F, C), with Q is
the set of states, I and O are the input and output alphabets,
q0 is the initial state, ∆ ⊆ Q×Q×I∪{ε}×O∪{ε}×C is
the transition relation (ε is the empty word), F is the set of
final states, and C is the set of conditions. Its components
may also be denoted by the system symbol as subscript.

For practical purposes, the states as well as the characters
of the I/O-alphabets are allowed to have an interior structure
and thus represent classes of structured states and characters
(which are nothing else than strings structured according
to a formal grammar). As a consequence of the possible
internal structure, the transition relation of a NEFIOA has
to be extended by conditions c, which relate to the interior
structure of the states and characters.

The semantics of the transitions are quite interesting.
A transition of a NEFIOA specifies that beginning with a
start state and either triggered by an input or spontaneously
(which formally is indicated by the empty word ε), a tar-
get state will be reached and some output may be done if a
certain condition is fulfilled. This does not specify any par-
ticular function in an abstract sense, but only a relation or
rule which could by fulfilled by an arbitrary number of func-
tions. In the realm of algebraic specifications, this is called
loose semantics [e.g. 19, chapter 3]. This is the main differ-
ence to approaches like abstract state machines [e.g. 9, 4] or
interactive transition systems [e.g. 29, 8], where each transi-
tion is supposed to represent a unique computable function.

For further simplification, we focus our following con-
siderations on pair protocols, where two NEFIOAs A and
B are connected to each other by two reciprocal transfer
functions, each provided by a channel. An extension to
protocols with arbitrary many participants or more than
two transfer functions should be obvious.

Definition 2.2: Let A and B be two NEFIOAs, whose
I/O-alphabets obey the condition that there are two
mappings fAB : OA → IB and and fBA : OB → IA,
allowing the coupling. A (pair) protocol between A

and B is given by P = (SPQP , q0P , TP , ΣP , ∆P , FP),
with SP = {A,B} is the set of systems, also called
participants, QP = QA × QB is the set of (structured)
protocol states, q0P = (q0A, q0B) is the initial pro-
tocol state , TP = {fAB, fBA} is the set of transfer
functions, mapping the output of one onto the input of
the other NEFIOA, ΣP = IA ∪ IB ∪ OA ∪ OB is the
set of (structured) characters, used within the protocol,
∆P ⊆ QP ×QP × ΣP ∪ {ε} × ΣP ∪ {ε} × C × S is the
protocol transition relation, and FP = FA × FB is the set
of common final states.

The definition of the protocol transition relation de-
scribes how the coupled system transits from a state to
a next state, which is always achieved by either automa-
ton A or B. The transitions t of the coupled system are
therefore described by the starting state (pA, pB) and tar-
get state (qA, qB) of both automata, the input and output
characters i, o and the condition c of the particular au-
tomaton transition and the automaton aut itself to which
transition this protocol transition relates. Thus, we have
t = ((pA, pB), (qA, qB), i, o, c, aut).

The elements of the transition relation t ∈ ∆P are deter-
mined inductively. First, all spontaneous transitions, which
start from the automata initial states are part of the rela-
tion. Then, assuming that a given transition t belongs to
the transition relation, other elements t′ of the transition re-
lation can be constructed, depending on the automaton to
which the transition is related to and the emptiness or non-
emptiness of the output.

i. (a) Assuming that q ∈ QA exists, such that
(q0A, q, ε, o, c) ∈ ∆A,
then t = ((q0A, q0B), (q, q0B), ε, o, c,A) ∈ ∆P

(b) Assuming that q ∈ QB exists, such that
(q0B, q, ε, o, c) ∈ ∆B,
then t = ((q0A, q0B), (q0A, q), ε, o, c,B) ∈ ∆P

ii.1 Assuming that t = ((pA, pB), (pA, qB), i, o, c,B) ∈
∆P , i ∈ IB ∪ {ε}, o ∈ OB and
there exits q′ ∈ QA such that (pA, q′, fBA(o), o′, c′) ∈
∆A,
then t′ = ((pA, qB), (q′, qB), fBA(o), o′, c′,A) ∈ ∆P

ii.2 Assuming that t = ((pA, pB), (qA, pB), i, o, c,A) ∈
∆P , i ∈ IA ∪ {ε}, o ∈ OA and
there exists q′ ∈ QB such that (qB, q′, fAB(o), o′, c′) ∈
∆B,
then t′ = ((pA, qB), (qA, q′), fAB(o), o′, c′,B) ∈ ∆P

ii.3 Assuming that t = ((pA, pB), (qA, qB), i, o, c, aut) ∈
∆P with i ∈ Iaut ∪ {ε}, o ∈ Oaut ∪ {ε}, then

(a) if q′ ∈ QA exists, such that (qA, q′, ε, o′, c′) ∈
∆A,
then t′ = ((qA, qB), (q′, qB), ε, o′, c′,A) ∈ ∆P ,



Figure 1. State diagram of a simple buying selling interaction. Each partner is described as a NEFIOA. Each transition
displays the possible input and output. ε represents the empty input or output. Seller may send a purchase order (PO),
a purchase order update (∆PO), a cancel order (CO) and the money. Buyer may send a confirmation (CF), a cancel
order confirmation (COCf), the bill (Bill) and the Good. For a detailed process description, and the additional relevant
conditions, see text.

(b) if q′ ∈ QB exists, such that (qB, q′, ε, o′, c′) ∈
∆B,
then t′ = ((qA, qB), (qA, q′), ε, o′, c′,B) ∈ ∆P

To exclude deadlocks and guarantee the possibility to es-
cape from live locks, it is additionally demanded that the
transition relation satisfies the cooperation condition, that
for each reachable state pair (pA, pB) there exists a finite
path, leading to a final state (qA, qB) ∈ F .

The instruction to construct the protocol transition rela-
tion does not guarantee that the relation is non-empty. Espe-
cially, it follows from the definition, that it is empty if none
of the systems offers a spontaneous transition from an initial
state: someone has to start the interaction spontaneously.

A pair protocol describes the interaction between two
systems self-contained in the sense that per definition all
characters which are sent within the described interaction
by one system have to be received by the other system.
Thus, a self-contained protocol lacks any input or output
and therefore is in this sense by itself no automaton any-
more.

While protocols according to definition 2.2 assume a set

of dedicated final states and therefore could be termed goal
oriented, endless cooperation are characterized by a set of
allowed common state pairs representing the achievement
of a given protocol loop. Thus, in the endless case, there
is some justification for saying that “the journey is the re-
ward”.

2.1 Example: Business interaction of buy-
ing and selling

A buyer named Buyer and a seller named Seller are in-
volved in a mutual business interaction as illustrated in Fig.
1. This example broadens our protocol definition in two as-
pects. First, the participants communicate over 4 channels
instead of two and second, seller is allowed to send out two
items at once, namely the bill and the good.

Both participants start from their initial state (i, I). Buyer
initiates the interaction by sending a purchase order (PO)
and waits for the confirmation (Cf). If the confirmation
does not arrive in time, a timeout triggers another transi-
tion of Buyer such that it cancels its purchase and issues a
cancellation of its purchase order (CO).



Figure 2. Part 1. shows a single transition which accepts a character ’a’ and sends another character ’b’ without
changing the state. Part 2. shows an additional transition, accepting the same character ’a’ and changes the state to q
while sending ’c’.

Seller receives the purchase order and decides either to
sell Buyer as requested or not. In the latter case, the in-
teraction is already over for it. In the former case, Seller
attempts to organize the ordered good and sends a confir-
mation in case it is sure enough to be able to deliver. If
this time takes too long, Buyer is as said before allowed to
cancel the order.

As long as Seller has confirmed but not yet sent the good
away, Buyer is allowed to update its purchase order (∆PO).
However, Seller may neglect an update if it arrives after the
good has already been packed and sent away together with
the bill.

Since bill and good are transported by different channels,
their receiving order is undetermined. So, after having re-
ceived both, order and bill, Buyer transfers the money.

An essential part of the interaction, but not displayed in
Fig.1, are the additional conditions. The first condition is
that each document has to relate to this interaction. This
can be assured by a “my sign/your sign” mechanism, pro-
viding a name for a particular interaction instance. With the
first PO, Buyer issues its sign and with the first response
Seller, which can be a Cf or a COCf, issues its sign. All
other transitions demand correct signs. Furthermore, the
delivered good has to match the ordered one. For example,
the delivered book “The plaque” has to match the ordered
book with the ISBN 978-3499225000. If applicable, the
delivered quantities may be allowed to deviate from the or-
dered quantities. However, the payed money has to match
the price of the delivered goods.

There are several interesting things to comment on. First,
the timeout is described as an ordinary event and not as an
exception. Second, to decide, which of the participants has
decided correctly with respect to potentially criss-crossing
CO and Cf documents, both participants have to agree upon
the same time. And third, in full accordance with Holz-
mann, who wrote in his foreword that “even the most care-
fully developed protocol specifications contain subtle errors
unless they are subjected to a thorough error analysis”, this
protocol is indeed seriously flawed. A confirmation could

reach Buyer, which was issued too late, such that Buyer had
correctly decided not to buy anything. But still, according
to the above protocol description, this reception would re-
sult in a transition to state V and a corresponding waiting
for goods and bill. Thus, another conditioned CF-receiving
transition of Buyer from E to E is necessary. Additionally,
and even worse, since the confirmation and the good are
transported with different channels, possibly not guarantee-
ing in order transport of both, it could well be that the good
arrives before the first confirmation and cannot be accepted.
Such protocol errors might become quite expensive in case
perishable good is delivered.

2.2 The semantics of UMM transaction
patterns

As a simple application of the formal protocol model
of system interactions, I would like to analyse the seman-
tics of the UN/CEFACT’s modelling methodology (UMM)
transaction pattern approach [e.g. 27, 22] to partition each
process-like interaction into one- or two-way interactions.
As Holzmann [11, section 1.3] explicitly refers to protocols
as “languages” , realizing that “a full protocol definition, in
fact looks much like a language definition” this small in-
vestigation should be quite interesting, as the transaction
pattern approach was inspired by Searle’s speech act theory
[1].

According to UMM, there are 6 different transaction pat-
terns. One-way are information and notification. Two-way
are request-response, request-confirm, query-response and
commercial transaction. The ’query’ and ’response’ or ’re-
quest’ and ’confirm’ characteristic is supposed to denote a
property of the sent data and their processing. However, in
a protocol, the semantics of the transmitted information is
not determined by a single, but by all accepting transitions
of a given state. That is, it depends on the complete protocol
transition relation and not just one single transition.

Fig. 2 shows two simple snippets of a system’s NEFIOA.
The first part displays a single transition as a case for a typ-
ical query function, which accepts a character ’a’ as a ques-



tion and sends another character ’b’ as a response, while
leaving the complete state invariant. In the second part of
Fig. 2 an additional transition is introduced, leaving the se-
mantics of the first transition invariant, but obviously not
the semantics of the received character ’a’.

With spontaneous interaction, we have a simple case,
which one might spontaneously qualify as a two way
asynchronous interaction pattern like question-response or
request-confirm as is illustrated with another NEFIOA snip-
pet in Fig. 3. Starting from state q, a character ’a’ is re-
ceived, triggering a silent state changing transition. While
spontaneously transiting back, a character ’b’ is sent away.

Figure 3. While holding state p, a character ’a’ is
triggers a silent transition to q. Starting from q, a
spontaneous transition sends a character ’b’

But, just looking at Fig. 3, we do not know, whether q
is really occupied in the beginning. It could well be, that
state p is occupied first. As a result, the system would be
in the opposite role and ’b’ would become its question and
’a’ would be the others’ response. Additionally, the whole
picture changes again, if other transitions referring to the
same characters come into play.

Summarizing, we can say that UMM transaction pattern
do not describe adequately process-like interaction seman-
tics with the necessary formal decoupling between the ex-
changed data and their processing as protocols do.

3 Discussion

Protocols describe the rule based external coupling of in-
formation processing systems with respect to their behav-
ior and exchanged information. Their nondeterminism is
a simple consequence of the fact that the interaction view
(or projection) of the systems intentionally does not pro-
vide enough information about the internal state so that the
input as well the provided internal state does not suffice to
determine the state transitions. However, it does not im-
ply that the systems themselves are nondeterministic. It just
means that they behave nondeterministically with respect to
the interaction.

I.e. nondeterminism is not introduced to abstract from
details of implementation [10, p.84] or only for convenience

[16, p.257], but nondeterminism seems to be the precondi-
tion for an efficient description of process-like interactions
between many different systems, where all interactions hap-
pen on the same level of abstraction. It seems highly intu-
itive that in such a situation, the projection of a system on
one of its possibly many interactions cannot be determinis-
tic.

3.1 The meaning of loose coupling

In general, process like interacting systems seem not to
expose their functionality, except to some receive functions
in the sense of a sensor like an ear or a post box. Especially,
these receive functions do not make any commitment with
respect to the semantics of the received information. I.e. the
correctness of such a receive function does not depend on
the correctness of further data processing.

In the sense of Wegener [29], protocol based interaction
descriptions therefore go beyond the description of func-
tional system relations, as they are based not on compu-
tational functions, but on abstract mathematical relations.
If we agree that a protocol provides a base for describing
peer-to-peer interactions or partnership, then we can say
that partnership is not a functional relation.

Protocols provide a somehow loose coupling in at least
two aspects: first, a protocol describes an interaction in
a way that both systems can cooperate sensibly without
knowing the complete state of the other system or even
knowing parts of it definitively all the time. To be able to
act sensibly in a protocol based interaction, it suffices to
know only parts of the others’ state for only certain points
in the past. Nondeterminism in this sense leads to “loose
coupling” in the sense of Glassman [7], who introduced
this term to describe sensible interactions between systems,
which relate only to some of their many states.

The second aspect seems to be that protocols don’t spec-
ify the functions with which each participant might realizes
the transitions completely. The actual transition functions
only have to comply with the given rules and otherwise just
have to be “good enough”.

The flexibility of protocol based interactions, which even
allows to easily describe criss-crossing information ex-
change, seems to come at the costs of the inductive tran-
sition relation definition. In contrast to automata, where
the transition relation is usually given as a static entity, the
transition relation of a protocol is a result of the interac-
tion itself. It depends for example on the initial state of the
participants. Perhaps this is one of the main reasons, why
protocol design is so inherently difficult.



3.2 Logical system relations and data se-
mantics classification: I/O parameters
versus documents

The non-functional system relation described by proto-
cols sheds new light on the question how we should sensi-
bly talk about exchanged information. I propose that the se-
mantic classification of the exchanged information should
relate to the logical system relation of the interacting sys-
tems. That is, without knowing this relation, the exchanged
information cannot be classified and it therefore probably
does not make much sense from a semantic perspective to
talk about “message exchange patterns” as is done in [25].
In contrast, knowing the system relation as being well de-
fined by obeying a protocol specification, it should be pos-
sible to define compatibility relations similar to upward and
downward compatibility of systems obeying functional re-
lations.

Exchanged information are commonly termed ”mes-
sages”. This can lead to an important ambiguity, since
the technical data structure, which is used by the channel’s
transport function for its technical realization, i.e. the en-
tirety of transport envelope and exchanged information, is
usually also termed “message”. As a result, there is the
danger to name two different entities, belonging to two dif-
ferent software layers, namely the process and the transport
layer, with the same term.

Information which are exchanged in a functional relation
imply as input of the functional mapping what will happen
in the sense of a uniquely defined output. This is indepen-
dent of any need of data transport like in remote function
calls (or remote method invocations). Actually, the cate-
nation of transfer (fAB, fBA) and processing functionality
g of a remote procedure r as r = fBA ◦ g ◦ fAB leads
to disappearance of the transfer functions - except for the
case, where information transfer does not work as specified,
the reason for the additional exceptions in remote function
calls.

Information, which are exchanged within a (nondeter-
ministic) protocol do not - from the perspective of the
sender - have this functional input character and relate to
future actions only subject to some uncertainty left to the
receiver. It therefore does not make sense to denote any op-
eration with an imperative semantics in such a document as
is proposed by others [e.g. 5, 2]. Within a protocol, the ex-
changed information first and foremost signal a state tran-
sition of the sender formulated in a way that the receiver
can make its own state transition. It suggests itself to name
these exchanged data “documents”, since their primary pur-
pose is to document something, namely state transitions of
a sender, in a for a receiver comprehensible way.

I think that protocols do provide the semantics for the
UML 2.1 collaboration diagram [26], as a UML collabora-

tion describes a view (or projection) of a set of cooperating
“classifiers”. However the existence of at least two different
system relation classes, namely collaborative and functional
also suggests that the semantics of the UML 2.1 connector
interpreted as a system relation, which is suggested by its
usage in composition diagrams, is not well defined.

An interesting consequence results from the fact that the
information needs of a receiver could also stem from other
protocol interactions it is involved in. For example a pa-
tient, admitted to a hospital, has to provide its insurance
card. For the treatment interaction between the hospital and
him or her, this is unnecessary. However, because the hospi-
tal will be involved in an additional billing interaction with
the patient’s insurance, the information has to be provided
at the admission by the patient. In an emergency case, the
hospital will set its claims aside, showing the flexibility of
process like interactions. It seems that one of the price tags
we have to pay for the loose coupling of systems is the lack-
ing generic, ever valid way to document a state transition of
a process within a given protocol. The requirements to doc-
ument a patient admission within the treatment interaction
are influenced by the requirements of the billing interac-
tions. There is not the one and only true way to say “a pa-
tient xyz is admitted” as there is no such one and only way
to say to ones children that they should make their home-
work or to say to your partner: “I love you!” . This fact
has far reaching consequences in the field of business pro-
cesses. It means that first, standard documents can guaran-
teely support only standard processes. Second, to achieve
the necessary flexibility to change business interactions, ex-
tension mechanisms for the involved documents have to be
necessarily provided with respect to defined compatibility
rules. Contrariwise, certain process-like interactions can be
circumvented by withholding the appropriate information -
the essence of data protection.

3.3 Concluding remark

Nondeterminism is the price we have to pay for achiev-
ing a certain decoupling between information systems from
their partner’s functionality and state. Nondeterministic in-
teractions also imply a decoupling between transport and
processing. It might even be desirable to introduce the en-
tity “protocol” to programming languages as “interfaces”
had been introduced to object oriented languages.

In summary we can say that process-like cooperation
makes a virtue of the necessity not to know the state of
a partner in detail and achieves a remarkable flexibility,
simplicity and robustness in achieving common goals.

Acknowledgement I herewith like to wholeheartedly



thank Prof. Hans-Jörg Kreowski who took quite some of
his time to help me formalizing my ideas and for his invalu-
able comments on several prior versions of this article.

References

[1] Maria Bergholtz, Prasad Jayaweera, Paul Jo-
hannesson, and Petia Wohed. Bringing speech
acts into UMM. In 1st Int. REA Technology
Workshop Copenhagen, Denmark, April 2004.
http://www.itu.dk/people/kasper/REA2004/pospapers/
PrasadJayaweera.pdf, called 2007-06-05.

[2] Web services business process execution lan-
guage version 2.0, 2007. http://docs.oasis-
open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf,
called 2007-04-18.

[3] Daniel Brand and Pitro Zafiropulo. On communi-
cating finite-state machines. J. ACM, 30(2):323–342,
1983.

[4] Egon Börger and Robert Stärk. Abstract State Ma-
chines. Springer, Berlin, Heidelberg, New York, 2003.

[5] Marco Carbone, Kohei Honda, Nobuko Yoshida,
Robin Milner, Gary Brown, and Steve Ross-
Talbot. A theortical basis of communication-
centred concurrent programming, 2002.
http://www.w3.org/2002/ws/chor/edcopies/theory/note
.pdf, called 2007-07-28.

[6] H. Ehrig, W. Reisig, and G. Rozenberg. Petri
Net Technology for Communication-Based Systems.
Advances in Petri Nets.: Advances in Petri Nets.
Springer, Berlin, Heidelberg, New York, 2004.

[7] R. B. Glassman. Persistence and loose coupling in
living systems. Behavioral Science, 18:83–98, 1973.

[8] Dina Q. Goldin, Scott A. Smolka, Paul C. Attie, and
Elaine L. Sonderegger. Turing machines, transition
systems, and interaction. Inf. Comput., 194(2):101–
128, 2004. http://www.cs.umb.edu/ dqg/papers/its-8-
01.ps, preliminary version, called 2007-07-28.

[9] Y. Gurevich. A New Thesis. Abstracts, American
Mathematical Society, abstract 85T-68-203, August
1985.

[10] C.A.R. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985/2004.

[11] Gerard J. Holzmann. Design and validation of com-
puter protocols. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1991.

[12] N. R. Jennings. On agent-based software engineering.
Artificial Intelligence Journal, 117(2):277–296, 2000.

[13] Nickolas Kavantzas, David Burdett, Gregory
Ritzinger, Tony Fletcher, Yves Lafon, and Charlton
Barreto. Web services choreography description lan-
guage version 1.0. http://www.w3.org/TR/ws-cdl-10/,
called 2007-07-28, 2005.

[14] G. Keller, M. Nüttgnes, and A.-W. Scheer. Semantis-
che Prozessmodellierung auf der Grundlage Ereignis-
gesteuerter Prozessketten (EPK). Veröffentlichung des
Instituts für Wirtschaftsinformatik (IWi) der Univer-
sität des Saarlandes, 89, 1992.

[15] N. A. Lynch and M. Tuttle. Hierarchical correctness
proofs for distributed algorithms. Technical Report
MIT/LCS/TR-387, 1987.

[16] Nancy A. Lynch. Distributed Algorithms. Morgan
Kaufmann Publishers, Inc. San Francisco, California,
USA, 1996.

[17] R. Milner, J. Parrow, and D. Walker. A calculus of mo-
bile processes (parts I and II). Information and Com-
putation, 100(1):1–77, 1992.

[18] Robin Milner. Communication and Concurrency.
Prentice Hall, 1989.

[19] John C. Mitchell. Foundations for Programming Lan-
guages. MIT Press, Cambridge, Massachusetts, 3 edi-
tion, 2000.

[20] Adrian Nye. X Protocol Reference Manual for X11,
Release 6. O’Reilly Media, 4 edition, 1995.

[21] A. Petri, Carl. Fundamentals of a theory of asyn-
chronous information flow. In Information Process-
ing 62, Proceedings of the 1962 IFIP Congress, pages
386–390. North-Holland, Amsterdam, The Nether-
lands, 1962.

[22] RosettaNet Implementation Framework:
Core Specification, V02.00.00, 2001.
http://xml.coverpages.org/RNIF-Spec020000.pdf,
called 2007-3-11.

[23] SAP Annual Report 2005.
http://www.sap.com/company/investor/reports/annual
report/2005/pdf/2005_SAP_Annual_Report.pdf,
called 2007-09-06.

[24] R. A. Scantlebury and K. A. Bartlett. A protocol for
use in the NPL data communications network. Tech-
nical Memorandum, 1967.



[25] SOAP Version 1.2 Part 1: Messag-
ing Framework (Second Edition), 2007.
http://www.w3.org/TR/soap12-part1, called 2007-09-
08.

[26] Unified Modeling Language: Superstructure, version
2.1.1, 2007. http://www.omg.org/docs/formal/07-02-
05.pdf, called 2007-09-06.

[27] UN/CEFACT Modelling Methodology (UMM) User
Guide, V20030922, 2003.

[28] W.M.P. van der Aalst, J. Desel, and E. Kindler. On the
semantics of EPCs. a vicious circle. In M. Nüttgens
and F.J. Rump, editors, EPK2002, Geschäftsprozess-
management mit Ereignisgesteuerten Prozessketten,
pages 71–79. 2002.

[29] P. Wegner. Why interaction is more powerful than al-
gorithms. Comm. ACM, 40(5):80–91, 1997.

[30] Web services description language (wsdl) 1.1, 2001.
http://www.w3.org/TR/wsdl, called 2006-07-20.

[31] Hubert Zimmermann. OSI reference model - The ISO
model of architecture for open systems interconnec-
tion. IEEE Transactions on Communications, COM-
28(4):425–432, 1980.


