
The relation between protocols and games∗

Johannes Reich

Gerbersruhstraße 147, 69168 Wiesloch
johannes.reich@sophoscape.org

Abstract: Both, games in a game theoretic sense and protocols in an informational
sense describe rule based interactions between systems. Some similarities and differ-
ences of both approaches are explored and illustrated with the example of the well
known game tic tac toe.

The main thesis of this article can be roughly states as “protocols, enriched by de-
cisions are games without payoff evaluation”. Introducing decisions as an additional
input alphabet to determine the usually nondeterministic transition relation of a proto-
col leads to a classification of decisions as being either spontaneous (or inducing) or
selection decisions.

Relating protocols and games, the complementarity of the focus of current game
theory and informatics becomes better visible: the focus of current game theory to find
distinguished strategies within single interactions requires the introduction of some
often quite arbitrary payoff function for optimization purposes. The focus of current
informatics to solve the coordination problem for finite systems, that is to determine
the nondeterminacies of single interactions by other interactions may contribute to
an inappropriate disregard of the decision and thereby the strategy concept of game
theory.

1 Introduction

Game theory as it was initiated by von Neumann (vNM90) is a mathematical theory of
social interaction. It’s subject are decision situations, where the result for each partici-
pant may depend not only on their own, but usually also on the decisions of the other
participants. It has become the dominant model in economic theory.

In theoretical informatics, rule based stateful nondeterministic interactions between infor-
mation processing systems are described by so called “protocols” (e.g. Boc78). According
to Holzmann (Hol91), Scantlebury and Bartlett (SB67) introduced the term pprotocolïn
1967 to denote a process-like data exchange.

Games and protocols obviously stem from different scientific domains. However, both
describe the interaction of systems. The main thesis of this article could be roughly stated
as “protocols, enriched by decisions are games without payoff evaluation”. As a conse-
quence, the relation between informational protocols and game theoretic games allows the

∗Published in S. Fischer, E. Maehle and R. Reischuk (Eds), GI Lecture Notes in Informatics, Proceedings of
the 39. Annual Conference of the German Gesellschaft für Informatik e.V. 2009 in Lübeck, pp. 3453-3464.

study of the nature of decisions. As a byproduct, we get yet another interesting formalism
for representing games.

The relation between games and informational entities like processes or protocols has
already been explored by other researchers. van Benthem (Ben02) introduced games as a
process model and investigated the question, “when are two games equal?” with means of
bisimulation analysis, the hallmark of logical process theories.

Ghoulalmi-Zine and Arrar (GZA05) modeled net-banking systems as a game in the sense
of game theory. They explain that “The protocol game of an exchange protocol is intended
to model all the possible interactions of the (potentially misbehaving) protocol parties.
The correct behavior of each party is represented by a particular strategy within the pro-
tocol game”. However, they restricted their model on synchronous interactions, where the
protocol participants interact with each other in rounds.

J.J. Kline and M. Kaneko (KK07) introduced a new mathematical representation of an
extensive game situation, called “information protocol”. Such an “information protocol”
consists of a set of information pieces, a set of actions and and a causality relation, linking
the processing of the information pieces by the actions together. In fact, they use the
“protocol” term in a different sense than it is proposed in this article, where “protocols”
are explicitly related to the interactions of systems.

In the first two parts of the article, the formal descriptions of games and protocols are in-
troduced. The protocol structure is extended by decisions and thereby becomes mappable
onto the game structure. All steps are illustrated by the example of the tic tac toe game.
Last but not least, the result of a unified view on interactions is discussed.

By convention, the components of a mathematical structure may be denoted by the struc-
ture’s symbol or index as subscript. For any alphabet set A, Aε := A ∪ {ε} with ε is the
empty word. For state value sets Q, Qε := Q ∪ {ε} with ε is the undefined value. ~p

[
qk

pk

]
denotes a vector ~q which is identical to ~p in all positions except position k where pk is
replaced by qk. Because of the space restrictions, proofs are only sketched.

2 Games

One common way to describe games is the “extensive form” (vNM90; Kuh53; Sel75).
Here, a game is specified as a tree where each node represents a state of play assigned
to a unique player. Each edge represents a move in the sense of a state transition based
either on a decision or on a transition probability. Every opportunity to move, the type
of action as well as the available information has to be given. The course starts at a
unique initial node and ends at a terminal node, which has a payoff assigned for the series
of moves it represents. As a player may not be able to observe the choice of another
player because of hidden or simultaneous moves, nodes belonging to one player can be
aggregated to information sets. The player to whom the information set belongs cannot
distinguish between the nodes of the set or in other words cannot base any of his decisions
on any difference between these nodes.

Definition 1: The extensive form representation of a finite game is a structure G = (K, N,
X,∼, R, C, u) where

1. K = (V, v0, T, p) is a finite tree with a set of nodes V , a unique initial node v0 ∈ V ,
a set of terminal nodes T ⊂ V and an immediate predecessor function p : V \
{v0} → D with the set of decision nodes D = V \T . The set of edges is defined as
E = {(a, b) ∈ V × V |a = p(b)}

2. N = {1, 2, . . . n} is a finite set of players together with a partition X = {Xi}i∈N

of the set of decision nodes D.

3. ∼= {∼i}i∈N is a set of equivalence relations, indicating that a player i cannot
distinguish between two nodes of an equivalence class, defined by the equivalence
relation. Each ∼i⊆ Xi ×Xi is required to fulfill: if v, v′ ∈ Xi and v ∼i v′ then the
number of immediate successors of v is equal to the number of immediate successors
of v′. The equivalence classes of ∼i partition Xi and are called information sets.
The set of all information sets of a player is denoted by Hi.

4. C = {Ci}i∈N is the set of choice (or decisions) sets of each player i = 1 . . . n. All
Ci are finite.

5. R = {Ri}i∈N is a set of transition relations with Ri ⊆ E × Ci. The transition
relations satisfy the following two constraints: first, each choice selects a unique
successor node, that is formally, if (p, q, c) ∈ Ri and (p, q′, c) ∈ Ri then q = q′.
Second, a choice has to be available to every node of an information set which
formally means that if (p, q, c) ∈ Ri and p ∼i p′ then there exists a q′ such that
(p′, q′, c) ∈ Ri.

6. u = (ui)i∈N : T → RN is a set of payoff functions, assigning each terminal node a
payoff value for each player.

2.1 Example: Tic tac toe as a game described in its extensive form

The game concept is illustrated by the game tic tac toe. As a game of perfect informa-
tion, where all players know all moves that take place, tic tac toe does not illustrate the
concept of information sets. Thus, the equivalence relation ∼ and the partition X can be
disregarded.

As shown in Fig. 1, the tic tac toe game is about a board of 3× 3 boxes where two players
are allowed to mark a box with their sign, usually an x and an o, one at a move. The player
who is first to have three of his symbols in a row, column or diagonal wins the game.

In the first move, player 1 can choose out of 9 positions. In the next move, player 2 can
choose out of 8 remaining positions, and so forth.

To define the game, I use the following expressions relating to the board state: c1 is true if
player 1 has won, c2 is true if player 2 has won, c3 is true if there is a draw, that is if 5 x
and 4 o are marked and c1 and c2 are false.

Figure 1: Tic tac toe game in its extensive or tree form.

Definition 2: A game G = ((V, v0, T, p), N, R, C, u) is called tic tac toe if it can be de-
scribed as following: N = {1, 2}. V = {1, 2}×{_, o, x}9. v0 = (1, ((_, _, _), (_, _, _), (_,
_, _))). T is the set of nodes where c1 is true and one o less then x are marked, or c2 is
true and as many o as x are marked, or c3 is true. The transition relation R is defined by
all triples (x, x′, i), where a state x′ = (p′, b′) is a successor state of x = (p, b), iff p = 1
and p′ = 2 and b′ = b, except in one place i where b[i] = _ and b′[i] = x or p = 2 and
p′ = 1 and b′ = b, except in one place i where b[i] = _ and b′[i] = o. The predecessor x
of a state x′ is then given by the first element of the triple of the successor relation with the
second element being x′. C = {1, . . . , 9} indicate the chosen positions. R1 is the subset
of the successor relation S, where for all (x, x′, i) is player(x) = 1. For R2 respectively.
u may be defined as (1,−1) for all game winning sequences for player 1, (−1, 1) for all
game winning sequences for player 2 and (0, 0) for a draw.

3 Protocols

Protocols can be viewed as descriptions of interactions between finite systems by itera-
tively linking the output of a state transition of one system to the input of a state transition
of the other system (e.g. Hol91).

Definition 3: A finite system is defined by a tuple S = (T, succ,Q, I, O, x, in, out, f). T
is the enumerable set of time values starting with 0 such that succ : T → T is the invertible
time successor function. Q, I and O are the finite sets of state values for the internal, input
and output states (x, in, out) : T → (Qε, Iε, Oε). f = (fext, f int) : Iε×Qε → Oε×Qε is
a partial function describing the time evolution or system operation triggered by an update
of its input parameters and updating the internal and output state in one time step with
(out(t′), x(t′)) =

(
fext(in(t), x(t)), f int(in(t), x(t))

)
for each t ∈ T with t′ = succ(t).

Definition 4: A behavior or trace of a finite system (or parts of it) is described by the
sequence of incoming and outgoing characters (in0, out0, in1, out1, . . .). ε-values do not
contribute to the behavior.

The behavior of a finite system can be prescribed with nondeterministic finite I/O au-
tomata. In the sense that the unobservable initial state value is part of the automata struc-
ture, “prescribing” is more than just “describing” observable behavior.

Definition 5: A nondeterministic finite I/O automaton (NFIOA) is defined by a tuple A =
(Q, I, O, q0, Acc,∆). Q is the non-empty finite set of state values, I and O are the finite
input and output alphabets where at least one of both is non empty, q0 is the initial state
value, Acc is the acceptance component and ∆ ⊆ Q × Q × Iε × Oε is the transition
relation.

In case that for each (p, i) ∈ Q × I there is at most one transition (p, q, i, o) ∈ ∆ then
∆ defines a partial function δ : Q × I → Q × Oε with (q, o) = δ(p, i). We then have a
deterministic automaton or DFIOA.

Definition 6: A NFIOA A = (QA, IA, OA, q0, Acc,∆) prescribes the behavior of a
projection of a system S = (T, succ,QS , IS , OS , x, in, out, f), if a projection function
π = (πQ, πI , πO) : QS×IS×OS → QA×IA×OA exists such that for any point in time
t ≥ 0 in every possible sequence, (πQ(x(t)), πQ(x(t′)), πI(in(t)), πO(out(t′))) ∈ ∆A.

Definition 7: A (pair) protocol is defined by P = (S, Q, ~q0, I, O,Acc, ∆). SP =
{A1,A2} is the set of participants described by NFIOAs, QP = Q1 × Q2 is the set
of protocol state values, ~q0P is the initial state value, IP = I1 ∪ I2 and OP = O1 ∪ O2

are the set of characters, and AccP = Acc1 ∧Acc2 is the common acceptance component
where all acceptance conditions are combined by logical conjunction. The transition rela-
tion is ∆P ⊆ QP ×QP × Iε

P ×Oε
P × SP . Its elements are determined inductively from

the transition relations of the participants. IfAk is the one participant,Ak̄ is the other one.

1. Assuming that ~p ∈ QP is a reachable state of the protocol and one of the par-
ticipants Ak provides a spontaneous transition (pk, qk, ε, o) with o ∈ Oε

k, then

(~p, ~p
[

qk

pk

]
, ε, o,Ak) ∈ ∆P is called a spontaneous transition of P .

2. Be (~p, ~p
[

qk

pk

]
, i, o,Ak) ∈ ∆P with i ∈ Iε

k, o ∈ Ok (and therefore o 6= ε). If the
other participant Ak̄ provides an induced transition with (pk̄, qk̄, o, o′) ∈ ∆k̄, then
(~p

[
qk

pk

]
, ~p

[
qk

pk

] [
qk̄

pk̄

]
, o, o′,Ak̄) ∈ ∆P is called an induced transition of P .

A protocol has to guarantee that every exchanged character is indeed processed:

Definition 8: A (pair) protocol P is called well formed (e.g. BZ83) if for every transition
(~p, ~p

[
qk

pk

]
, i, o,Ak) ∈ ∆P with i ∈ Iε

k, o 6= ε there exists an induced transition of Ak̄

Additionally, a protocol has to guarantee that the acceptance condition can really be met
from each reachable state:

Definition 9: A well formed protocol P is called consistent if for each reachable protocol
state value ~p ∈ QP there exists a (finite) path such that its acceptance condition hold.

In the case of finite automata with the acceptance component of a set of final states FP =
F1×F2, a consistent protocol always provides a finite path leading to a final protocol state.

3.1 Partitioned I/O automata

For describing more complex rules, ordinary I/O automata become awkward because of
the so-called “state explosion”. A state capable of representing an arbitrary 32 bit integer
value already introduces roughly 4.3 billion different state values. To make complex I/O
automata better comprehensible, the transition relation ∆ can be partitioned into N disjoint
sub-relations ∆l ⊆ ∆ with ∆ =

⋃
∆l:

Definition 10: A nondeterministic partitioned finite I/O automaton (NPFIOA) is defined
by A = (Q, I, O, q0, Acc, {∆l}l∈N). Q, I , O, q0 and Acc are defined as in definition 5.

The sub-relations allow a representation of complex rules by corresponding expressions
which become true for each member and only each member of the sub-relations. In case of
a deterministic automaton (DPFIOA), each sub-relation defines its own transition function.

One way to find an appropriate partition of a given transition relation is to introduce a
“principal state component” together with “structured” I/O characters. As principal state
component the first component of the internal state can be chosen. A structured character
is actually a string structured according to a given grammar G. Each ∆l is then determined
by the value of a principal start and target state component p̂ and q̂ and the grammars Gi

and Go of its input and output character: ∆l = ∆l(p̂, q̂,Gi,Go).

Finding an appropriate partition therefore is a bit arbitrary. For example, a confirmation
and a rejection can be modeled as two different document types or as two different instan-
tiations of a single document type.

3.2 Example: Tic tac toe described as an interaction

I now describe the tic tac toe game of section 2.1 as a protocol interaction where two
players tell each other their moves as is illustrated in Fig. 2.

A class of states is denoted by [p, b]c where p is the principal state component, b is the
board state and c is one of the board related conditions. A class of transitions is also
indicated by square brackets ’[]’. A single character encoding the value k is denoted as $k.

For convenience, I introduce two additional conditions relating to the board state: c4 is
true if the k-th position is empty, c5 is true if the ’$k’-th position is empty.

Definition 11: Two participants 1 and 2 are involved in a tic tac toe protocol if they can
be characterized by (Q, I, O, q0, F, {∆l})1,2 with:

Q1,2 = {won, lost, draw, mt, ot} × {_, o, x}9},
I1,2 = O1,2 = {1, . . . , 9},
q01 = (mt, ((_, _, _), (_, _, _), (_, _, _))),

q02 = (ot, ((_, _, _), (_, _, _), (_, _, _))),
∆1 = {[[mt, b]¬c2∧c4 , [ot, b

[
x
_
]

k
]¬c2 , ε, $k],

[[ot, b]¬c1∧¬c3∧c5 , [mt, b
[

o
_
]

k
]¬c1∧¬c3 , $k, ε],

[[ot, b]c1 , [won, b]c1 , ε, ε], [[ot, b]c3 , [draw, b]c3 , ε, ε], [[mt, b]c2 , [lost, b]c2 , ε, ε] },

∆2 = {[[mt, b]¬c1∧¬c3∧c4 , [ot, b
[

o
_
]

k
]¬c1∧¬c3 , ε, $k],

[[ot, b]¬c2∧c5 , [mt, b
[

x
_
]

k
]¬c2 , $k, ε],

[[ot, b]c2 , [won, b]c2 , ε, ε)], [[mt, b]c3 , [draw, b]c3 , ε, ε], [[mt, b]c1 , [lost, b]c1 , ε, ε]} },
F1 = {[won, b]c1 , [lost, b]c2 , [(draw, b]c3},
F2 = {[won, b]c2 , [lost, b]c1 , [draw, b]c3},

3.3 Introducing decisions - the game automaton and its simplification

Decisions determine the actions of a player. Any extension of a NFIOA which leaves the
original I/O-behavior invariant and results in a deterministic automaton could therefore be
interpreted as introducing decisions.

Definition 12: A corresponding decision automaton D of a NFIOA A (of a protocol P) is
a DFIOA with an input alphabet ID = IA ∪D (IA ∩D = {}) and a state QD = QA×Q′

such that its generated behavior restricted to the input character set IA still prescribes the
same behavior as A.

Proposition 1: For each NFIOA a corresponding decision automaton can be constructed.

Proof: A possible construction mechanism is to add an additional NFIOA with the deci-
sion alphabet as input and no output to the original NFIOA as an unsynchronized product
(see definition below) and synchronize this product afterwards in a way that the original
behavior is retained and a deterministic automaton results.

Definition 13: The unsynchronized product of two NFIOAs A1 and A2 is defined by
NFIOA P with QP = Q1 × Q2, IP = I1 ∪ I2, OP = O1 ∪ O2, ~q0 = (q01, q02), The
common acceptance condition AccP is the logical conjunction of the individual acceptance
conditions, ∆P := {(~p, ~q, i, o)| ~p is a reachable state and Ak∈{1,2} provides a transition

(pk, p′k, ik, ok) with ~q = ~p
[

p′
k

pk

]
and i = ik and o = ok}.

Synchronization which leaves the original I/O-behavior invariant can then be achieved by
two mechanisms: transition elimination and ε-merge. As is illustrated in Fig. 3, transi-
tions of the product automaton which contribute to nondeterministic ambiguities but whose
omission don’t affect the projected original behavior can be eliminated. In an ε −merge
a spontaneous transition without input is merged onto the preceding transition.

Proposition 2: Be P a consistent protocol with participants A1 and A2. Be furthermore

Figure 2: Two systems playing tic tac toe. System 1 makes the initial move.

D1 and D2 some corresponding decision automata with their additional input alphabet
D1 and D2. Then, D1 and D2 interacting together as A1 and A2 is a deterministic finite
automaton with the input alphabet D1 ∪D2 and. Such an automaton is also called a game
automaton.

Proof: Because the interaction fulfills the consistency condition, all transitions within the
game automaton beside the decision-induced now occur automatically. Thus, with respect
to the input alphabet D1 ∪D2, the interacting decision automata represent a deterministic
finite automaton.

As the decision automata interaction occurs automatically, it can actually be eliminated in
analogy to the well known ε-elimination (e.g. HMU02, section 2.5). I define:

Definition 14: The decision-closure of a state q and a decision d of a game automaton D
are all states reachable from δ(q, d) without any further decision.

Partitioning the set of states into decision closures in the sense of ε− elimination, we can
reach a simplified game automaton, relating only to these decision closures. For such a
simplified game automaton, the following proposition holds:

Proposition 3: Be A = (
⋃

Di, Q, q0, F, ∆, N) a simplified game automaton with a non-
cyclical transition relation ∆A, a set of finite states FA as acceptance component and
supplemented by the set of players N . And be f : Q → V , g :

⋃
Di → C two bijections.

Then A defines a game G = ((V, v0, T, p), N, X,∼, R, C, u) according to definition 1
without its payoff functions u.

Figure 3: Synchronization by transition elimination. Please note the symmetry breaking effect of
transition elimination.

Proof: VG = f(QA), v0 = f(q0), and TG = f(FA), C = g(
⋃

Di). Because of its deter-
minacy, the transition relation ∆A fulfills the first condition, that each decision character
“selects” an immediate successor node. The second condition that a choice has to be avail-
able to every node of an information set of a player i can be used to find the information
sets. Thus, ∆A is transformed onto RG and the predecessor function p can be extracted
from RG . The partition of the set QA \ FA into disjoint subsets which can be attributed
to each player is possible because of the construction of the simplified game automaton,
leading to XG .

In a game of perfect information, it should be possible to show that any relevant internal
’board’ states of both players become identical before any further decision is made by
either of them.

3.4 Tic tac toe as a (simplified) game automaton

For the tic tac toe game, we get the following decision-closures: ’1 has won’ if c1 holds
for player 1, ’2 has won’ if c2 holds for player 2, ’draw’ if c3 holds for 1. ’1’s turn’ if the
only next possible move is a choice of 1 and 2 has not yet won and ’2’s turn’ if the only
next possible move is a choice of 2 and 1 has not yet won. Formally:

1 has won := {[[ot1, b1]c1 , [ot2, b2]¬c2 , $k1] , [[won1, b1]c1 , [ot2, b2]¬c2 , $k1] ,

[[ot1, b1]c1 , [mt2, b2]c1 , ε] , [[won1, b1]c1 , [mt2, b2]c1 , ε] , [[won, b]c1 , [lost, bc1], ε]}
2 has won := {[[ot1, b1]¬c1 , [ot2, b2]c2 , $k2] , [[ot1, b1]¬c1 , [won2, b2]c2 , $k2] ,

[[mt1, b1]c2 , [ot2, b2]c2 , ε] , [[mt1, b1]c2 , [won2, b2]c2 , ε] ,
[[lost1, b1]c2 , [ot2, b2]c2 , ε] , [[lost1, b1]c2 , [won2, b2]c2 , ε]}

draw := {[[ot1, b1]c3 , [ot2, b2]¬c2 , $k1] , [[draw1, b1]c3 , [ot2, b2]¬c2 , $k1] ,
[[ot1, b1]c3 , [mt2, b2]c3 , ε] , [[draw1, b1]c3 , [mt2, b2]c3 , ε] ,
[[ot1, b1]c3 , [draw2, b2]c3 , ε] , [[draw1, b1]c3 , [draw2, b2]c3 , ε]}

1’s turn := {[[ot1, b1]¬c2 , [ot2, b2]¬c2 , $k2] , [[mt1, b1]¬c2 , [ot2, b2]¬c2 , ε]}
2’s turn := {[[ot1, b1]¬c1 , [ot2, b2]¬c1 , $k1] , [[ot1, b1]¬c1 , [mt2, b2]¬c1 , ε]}
Each decision-closure has an element which is the endpoint of the deterministic chains (the
underlined states). It can be seen that for each endpoint element b1 = b2 holds. That is,
before any decision is made by either of the two players, the internal board states always
become identical. Thus, referring to these closures, it makes sense to refer to a “single”
board. Such a tic tac toe game with a single board is illustrated in Fig. 4 and is formally
given by the DPFIA (Q, D, qo, {∆k}, F) with

Q = {(p, b)|p ∈ {1 has won, 2 has won, 1’s turn, 2’s turn, draw}, b ∈ {_, o, x}9},
D = {1, . . . , 9}
q0 = (1’s turn, ((_, _, _), (_, _, _), (_, _, _))),
∆ = {[[2’s turn, b]¬c2∧c4 , [1’s turn, b

[
o
_
]
]¬c2 , k2],

[[2’s turn, b]¬c2∧c4 , [2 has won, b
[

o
_
]
]c2 , k2],

[[1’s turn, b]¬c1∧¬c3∧c4 , [2’s turn, b
[

x
_
]
]¬c1∧¬c3 , k1],

[[1’s turn, b]¬c1∧¬c3∧c4 , [1 has won, b
[

x
_
]
]c1 , k1],

[[1’s turn, b]¬c1∧¬c3∧c4 , [draw, b
[

x
_
]
]c3 , k1]}

F = {[1 has won, b]c1 , [2 has won, b]c2 , [draw, b]c3}

Figure 4: Tic tac toe game with a single board as deterministic decision automaton.

4 Discussion

With this article I illustrate the relation between games and protocols. It is interesting to
review the differences of both formalisms which describe very similar aspects of interac-
tions. The fundamental significance of both concepts is emphasized by directly attributing
the protocol concept to the very general system concept. However, while the traditional

extensive formalism of games focuses on the move of a participating system, protocols
focus more on the separation of the systems during the interaction.

According to both approaches, games specify interactions where participants can make
decisions not determined by the interactions. From this point of view, we can speak of
decisions only if we assume nondeterministic interaction relations. If the interactions de-
termine the actions then there is no room left for any decisions in this sense.

This study also indicates to classify decisions into spontaneous (or inducing) and selection
decisions as undetermined transitions of a protocol occur either spontaneously or induced.
Hence, the characters of the decision alphabet of the corresponding decision automaton
either trigger a spontaneous transition or select an otherwise undetermined induced transi-
tion.

In game theory much weight is currently put on the question of strategy or how to decide
in a single sort of game. Blanking out everything else, identifying a distinguished strategy
depends on additional assumptions like payoff optimization.

In informatics, the focus to describe interactions is actually not so much the optimized
behavior in a single interaction, but to assure that the player - or process, as it is called -
coordinates all interactions it is involved in at least correctly. Thus, in informatics the cor-
rectness of deterministic systems, involved in many different interactions, each of which
is nondeterministic by itself, is key. And optimization of single interactions becomes sub-
ordinate to performing “good enough” over all.

Here, my hope is that both disciplines could learn from each other: on the one hand,
game theory could look more at the player and on its necessity to coordinate different
interactions in the sense of “satisficing” (Sim56) for identifying distinguished strategies.
On the other hand, informatics could focus more on systems which effectively have some
real degrees of freedom to make their decisions and have to figure out real strategies to fill
this gap.

References

[Ben02] Johan Van Benthem. Extensive Games as Process Models. J. of Logic, Lang.
and Inf., 11(3):289–313, 2002.

[Boc78] Gregor V. Bochmann. Finite State Description of Communication Protocols.
Computer Networks, 2:361–372, 1978.

[BZ83] Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines.
J. ACM, 30(2):323–342, 1983.

[GZA05] N. Ghoualmi-Zine and A. Araar. Net-banking system as a game. In Proceed-
ings of the world academy of science, engineering and technology, volume 6,
pages 26–29, June 2005.

[HMU02] J. E. Hopcroft, R. Motwani, and J. D. Ullmann:. Einführung in die Automaten-

theorie, formale Sprachen und Komplexitätstheorie. Addison-Wesley, Pearson
Studium, 2002.

[Hol91] Gerard J. Holzmann. Design and validation of computer protocols. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[KK07] Jeffrey J. Kline and Mamoru Kaneko. Information Protocols and Extensive
Games an Inductive Game Theory. 2007.

[Kuh53] H.W. Kuhn. Extensive games and the problem of information. In H.W. Kuhn
and A.W. Tucker, editors, Contributions to the Theory of Games, Vol. II, vol-
ume 28 of Annals of Mathematics Studies, pages 193–216. Princeton Univer-
sity Press, Princeton, NJ, 1953. Reprint in Kuhn(1997), 46-68.

[SB67] R. A. Scantlebury and K. A. Bartlett. A Protocol for Use in the NPL Data
Communications Network. Technical Memorandum, 1967.

[Sel75] R. Selten. Re-examination of the perfectness concept for equilibrium points in
extensive games. International Journal of Game Theory, pages 25–55, 1975.
Reprinted in Kuhn(1997), 317-354.

[Sim56] A. Simon, Herbert. Rational choice and the structure of the environment. Psy-
chological Review, 63:129–138, 1956.

[vNM90] Johann von Neumann and Oskar Morgenstern. Spieltheorie und oekonomisches
Verhalten. University Press, 3 edition, 1990.

