
Finite system composition and interaction∗

Johannes Reich

Gerbersruhstraße 147, 69168 Wiesloch
Johannes.Reich@sophoscape.de

Abstract: In this article, it is proven for finite systems that if by reciprocal interaction,
one finite system determines the action of another finite system, then both systems
become subsystems of a larger supersystem.

To achieve this result, the notion of a finite system is formalized and the rules for
sequential and parallel system composition are provided. The reciprocal interaction is
captured by the protocol concept.

Being part of a larger supersystem is shown not to be a property which can be
attributed to the system itself but depends on the context of its interaction, namely
whether its interactions determine its behavior or not.

The result seems to be especially relevant in Information Systems and eCommerce,
as it raises concerns about what end-to-end for example in a security context in a system
theoretic sense really means. It also demonstrates the tight connection between our
system and our function notion and thereby contributes to a better understanding, why
approaches that rest mainly on the function notion struggle so much with network-
like interacting systems and the necessary ”loose coupling” in the sense of a sensible
interaction with only little information about the internal state of the other actors.

1 Introduction

What is the difference between a system-to-system relation in the sense of peer-to-peer in
contrast to system-to-subsystem? Shouldn’t it be formally decidable, whether two interact-
ing systems relate in one or the other way?

There are a lot of aspects, where this distinction matters. From a security point of view,
it makes a big difference if a system relates to another system just as its subsystem or
as another independent system. Especially in Information Systems and eCommerce, this
raises concerns about what end-to-end really means. Actually, the debate about the end-to-
end argument (SRC84) completely rests on a well defined system notion.

The well known OSI Reference Model (Zim80) was based on the assumption that protocols
are well suited to describe peer-to-peer relations and functional interfaces are well suited
to express system-to-subsystem relations. It is in full agreement with this understanding
that security mechanisms like asymmetric signature and encryption harmonizes very well
with protocol described interactions (Sch96). They presuppose the acquaintance of the
participants in a logical sense as the endpoints of untyped channels. In contrast, there is a
wide held belief in the process community that supersystem formation does not depend on
the type of interaction but occurs by the interaction itself (Mil80; Mil89; Hoa04)

∗published in: Klaus-Peter Fähnrich, Bogdan Franczyk (Eds), GI Lecture Notes in Informatics, Proceedings of
the 40. Annual Conference of the German Gesellschaft für Informatik e.V. 2009 in Leipzig, Vol. 2, pp. 624-637.

This article ties in with the basic OSI-paradigm but shows that things are a bit more com-
plex. The starting point in section 2 is that our notion of a system depends directly on the
function notion: a system is characterized by its system operation or time evolution func-
tion mapping some input and internal state onto some output and internal state within one
time step. To identify composed systems, it is therefore necessary to provide such system
operations based on the interaction of other (sub-)systems. In section 3 I look at reciprocal
system interaction, namely protocols. Protocols do not necessarily lead to super system
formation in the sense of this article. I show that in the special case, where a system be-
haves deterministically within a reciprocal interaction, super system formation does occur.
In section 4 , I refer to a similar approach of Jawad Drissi et al. (DYPvB98) to solve another
problem in the area of system composition. In the last section, the results are discussed in
a broader context.

2 Systems

Informally, a system is a set of states together with its system function. The system function
governs the time-wise evolution of the system states. A state characterizes a time dependent
property of a system.

I use the formal definition of a system, introduced in (Rei09), which is in line with system
theory (Unb93). ε symbolizes the empty character in case of the sets of state values (or
alphabets) I and O and Iε = I ∪ ε and Oε = O ∪ ε. The n-fold application of the
(invertible) time successor function succ is written as t +S n := succn

S(t) (I may drop the
subscript if the relation to the system is clear).

Definition 2.1: A finite system is defined by a tuple S = (T, succ,Q, I,O, x, in, out, f).
T is the enumerable set of time values starting with 0 such that succ : T → T is the
invertible time successor function. Q, I and O are the finite sets of state values for the
internal, input and output states (x, in, out) : T → (Q, Iε, Oε). f = (fext, f int) : Iε ×
Q → Oε ×Q is a function1 describing the time evolution or system operation triggered by
an update of its input parameters and updating the internal and output state in one time step
for each t ∈ T :(

out(t + 1)
x(t + 1)

)
=

(
fext(in(t), x(t))
f int(in(t), x(t))

)
.

Systems without internal states are called stateless. The fact that a system according to
definition 2.1 provides a new output and internal state value one time step after it was
provided some input is called the one-step I/O relation.

1In (Rei09) I defined this function as being partial. However, because this makes reasoning a bit more complex
I use a total function in this definition here.

2.1 Composed systems

Being based on the function notion, the system notion as defined in def. 2.1 is recursive:
a system can be composed from other systems. The composition rules have to guarantee
that the composed systems can be viewed in exactly the same way as the parts. Especially,
a time successor function has to be provided with an appropriate one-step I/O relation.

2.1.1 Sequential system composition

A simple way to compose systems sequentially is to feed one system’s output into another
system’s input.

Definition 2.2: Two discrete systems Si = (Ti, succi, Qi, Ii, Oi, xi, ini, outi, fi), i =
1, 2 with O1 ⊆ I2 are said to be (laggingly) concatenated (from (τ1, τ2) onward) if τ1 ∈ T1,
τ2 ∈ T2 exist such that out1(τ1 +1 n +1 1) = in2(τ2 +2 n) for all n ≥ 0.

The following proposition holds

Proposition 2.1: Let S1 and S2 be two laggingly concatenated systems. Then, the struc-
ture S = (T, succ,Q, I,O, x, in, out, f) with T = {n ∈ ℵ0|∃(t1, t2) ∈ T1 × T2 with t1 =
τ1 +1 n, t2 = τ2 +2 n} with succ : T → T defined as succ(t) = t + 1, Q = Q1 × Q2,
I = I1, O = O2, x = (x1, x2), in = in1, out = out2 is again a system according to
definition 2.1

The proof follows directly from explicitly writing down the system function where t =
0, 1, . . . such that t1 = succt

1(τ1), t2 = succt
2(τ2)

out1(t1 +1 1)
out2(t2 +2 1)
x1(t1 +1 1)
x2(t2 +2 1)

 =

fext
1 (in1(t1), x1(t1))

fext
2 (fext

1 (in1(t1), x1(t1)), x2(t2))
f int
1 (in1(t1), x1(t1))

f int
2 (fext

1 (in1(t1), x1(t1)), x2(t2))

I also say that the two laggingly concatenated systems S1 and S2 form a sequential system
S and write S = S2 ◦ S1.

The second system therefore is always one step behind: out1(τ1+11) = in2(τ2), out1(τ1+1

2) = in2(τ2 +2 1), etc. The difference between the inner and outer time structure of se-
quentially composed systems is expressed in the next proposition.

Proposition 2.2: A time step in a sequential system S = S2 ◦ S1 takes as long as the time
steps of system S1 and S2 together.

Proof: Let τ1 ∈ T1, τ2 ∈ T2 be such that out1(τ1 +1 n +1 1) = in2(τ2 +2 n) for all
n ≥ 0. Then with t1,2 = succt

1,2(τ1,2), the evaluation of fS at time t requires first to
evaluate (out1(t1 +1 1), x1(t1 +1 1)) = f1(in1(t1), x1(t1)) providing the inputin2(t2) =
out1(t1+11) for the corresponding time step of system 2 as (out2(t2+21), x2(t2+21)) =
f2(in2(t2), x2(t2)).

The extension to more then two concatenated systems is straight forward.

2.1.2 Parallel system composition

Parallel processing systems can also be viewed as one system if there is a common input
to more than one successor system, the parallel processing operations are independent and
therefore well defined and both system operations synchronously finish their state evalua-
tion in a single common step.

Definition 2.3: Two discrete systems Si = (T, succi, Qi, Ii, Oi, xi, ini, outi, fi), i = 1, 2
with I1 = I2 are said to work in parallel (from (τ1, τ2) onward) if x1 6= x2 τ1 ∈ T1,
τ2 ∈ T2 exist such that in1(τ1 +1 n) = in2(τ2 +2 n) for all n ≥ 0.

Proposition 2.3: Let S1 and S2 be two parallel working systems. Then, the structure S =
(T, succ,Q, I, O, x, in, out, f) defined by T = {n ∈ ℵ0|∃(t1, t2) ∈ T1 × T2 with t1 =
succn

1 (τ1), t2 = succn
2 (τ2)}with succ : T → T defined as succ(t) = t+1, Q = Q1×Q2,

I = I1 = I2, O = O1 × O2, x = (x1, x2), in = in1 = in2 for t1 ≥ τ1 and t2 ≥ τ2 as
well as out = (out1, out2) is again a system according to definition 2.1

Again, the proof results directly from the definitions.

To work in parallel therefore means that the input state of two otherwise independent sys-
tems is identical (from a given point in time), whereby two parallel working systems can
be viewed as a supersystem only if they perform their time step in a synchronized manner.

I also say that the two parallel working systems S1 and S2 form a parallel system S and
write S = S2||S1.

The extension to more than two parallel working systems is again straight forward.

2.1.3 General system composition and subsystem relation

With sequential and parallel system composition defined separately, it is interesting to see
which rules their combination obey.

As the application of an operation f preceding two parallel operations g and h is equivalent
to the parallel execution of g after f and h after f , together with some bookkeeping on time
steps and i/o-states, the following proposition is easy to prove:

Proposition 2.4: For three systems P1, P2 and S where P1 and P2 are parallel systems
and P1||P2 and S are sequential systems, the right distribution law holds: (P1||P2) ◦ S =
(P1 ◦ S)||(P2 ◦ S).

As in general sequential system composition is non-commutative (S1 ◦ S2 6= S2 ◦ S1), it
follows that the left distribution law does not hold: S ◦ (P1||P2) 6= (S ◦ P1)||(S ◦ P2).

Equipped with a notion of system composition, the concept of super- or subsystem can be
defined.

Definition 2.4: Let S be composed from systems Uk (k = 1, . . . , n) e.g. according to defi-
nition 2.2 or 2.3. Then S is called the supersystem of the Uk and the Uk are the subsystems
of S.

2.2 Prescribing system behavior by I/O automata

The formal definitions of a system behavior and its description is again taken from (Rei09).

Definition 2.5: A behavior or (observable) trace of a finite system (or parts of it) is
described by the sequence of incoming and outgoing characters (in0, out0, in1, out1,
. . .). As ε-values are viewed as empty characters, they do not contribute to the behavior.

The behavior of a finite system can be prescribed with nondeterministic finite I/O automata.
In the sense that the unobservable initial state value is part of the automata structure, “pre-
scribing” is more than just “describing” observable behavior.

Definition 2.6: A nondeterministic finite I/O automaton (NFIOA) is defined by a tuple
A = (Q, I, O, q0, Acc,∆). Q is the non-empty finite set of state values, I and O are the
finite input and output alphabets where at least one of both is non empty, q0 is the initial
state value, Acc is the acceptance component and ∆ ⊆ Q×Q× Iε × Oε is the transition
relation.

In case that for each (p, i) ∈ Q × I (i 6= ε) there is at most one transition (p, q, i, o) ∈ ∆
then ∆ defines a function δ : Q × I → Q × Oε with (q, o) = δ(p, i). We then have a
deterministic automaton or DFIOA. Actually a DFIOA is a Mealy automaton (Mea55).

Definition 2.7: A NFIOA A = (QA, IA, OA, q0, Acc,∆) prescribes the behavior of a
projection of a system S = (T, succ,QS , IS , OS , x, in, out, f), if a projection function
π = (πQ, πI , πO) : QS × Iε

S × Oε
S → QA × Iε

A × Oε
A exists such that for any point in

time t ≥ 0 in every possible sequence, (πQ(x(t)), πQ(x(t + 1)), πI(in(t)), πO(
out(t + 1))) ∈ ∆A.

The acceptance component Acc is traditionally given as a set of state values, as a set of
state value sets or as a function from the set of state values to a finite set of natural num-
bers (Far02), depending on the “computational” model behind the automaton. For finite
computation, a sequence of inputs is declared as accepted if the automaton ends up in a
configuration considered to be final. For an infinite computation, more complex accep-
tance conditions have been defined like Büchi, Muller, Rabin or Street acceptance.

Usually, Q is named as the set of ’states’ in the automata literature. However, with relation
to the system concept as defined in section 2 it is more consistent to name it the set of ’state
values’ as it will denote the set of values a state can take.

3 Reciprocal system interactions and supersystem formation

As we will see, there are important system interactions that do not necessarily lead to super
system formation. The description of these interactions are well known in informatics and
are called “protocols” (Hol91; vB75; BZ83).

3.1 Protocols and channels

There is no uniform way to describe protocols in the literature. One class of descriptions
achieve the coupling by synchronized execution of complementary operations (vB78). In
this case, a send action of the sender system and a receive action of the receiver system
are “directly coupled”, as Gregor v. Bochmann says, and executed as one action. Another
class of descriptions achieve the coupling by separating sending and receiving actions as
different transitions explicitly by a channel (BZ83).

The way the system parts are described influence the messages’ and channels’ role in the
structure of the protocol. In the former case, assuming stateless data transport, the notion
of a message and channel disappears altogether and the system’s send and receive actions
become directly coupled in the sense of Gregor v. Bochmann. He calls this the “empty
medium abstraction”. In the latter case, channels are at least from a modeling perspec-
tive always stateful, requiring an extra analysis, whether states with empty channels are
reachable (so called “stable states” according to Brand and Zafiropulo (BZ83)).

My idea to describe system interactions is neither to use synchronized actions, nor to sep-
arate sending and receiving actions by channels, but just to assume as I did with system
composition that the output state of one system is the input state of another system. In the
end, the presented approach is similar to Gregor v. Bochmann’s “empty medium abstrac-
tion” as it relates the output of one system directly to the input of another system.

To describe the interaction of several systems, each described as an NFIOA according to
definition 2.6, we additionally have to describe how the systems are connected, that is
which output and input state of which system are identical for which transition. The fol-
lowing protocol definition is extended to more than two participants compared to (Rei09)
where I used it to describe the tight relation between games and protocols. As the par-
ticipating systems are enumerated, the system subscript is replaced by the enumeration
subscript to simplify notation.

Definition 3.8: A protocol is defined by P = (S, Q, ~q0, I, O,Acc, Ω, ∆), with SP =
{A1, . . . ,An} is the set of participants described by NFIOAs, QP = ×Qk is the set of
protocol state values, ~q0P is the initial state value, IP =

⋃
Ik and OP =

⋃
Ok are the

set of characters, and AccP =
∧

Acck is the common acceptance component where all
acceptance conditions are combined by logical conjunction. The receiver determination
ΩP ⊆ ∆P × SP lists the participant to which the output character is sent 2.

2The separation between the receiver determination and the protocol transition relation has two advantages:
first, the formalism is changed very little if the interaction between only two systems is considered as is done in
(Rei09). Second, it can be more easily extended to allow for more than one output character in a single system

The transition relation is ∆P ⊆ QP×QP×Iε
P×Oε

P×SP . Its elements are determined in-
ductively from the transition relations of the participants. First, all spontaneous transitions
which start from the participants initial state values (or any other reachable state) are part
of the relation. Then, assuming that a given transition t belongs to the transition relation,
other elements t′ of the transition relation can be constructed, depending on the participant
to which the transition relates.

1. Assuming that ~p ∈ QP is a reachable state of the protocol and one of the participants
Ak provides a spontaneous transition (pk, qk, ε, o) with o ∈ Oε

k, then (~p, ~p
[

qk

pk

]
, ε, o,Ak) ∈

∆P is called a spontaneous transition of P .

2. Assuming that (~p, ~p
[

qk

pk

]
, i, o,Ak) ∈ ∆P with i ∈ Iε

k, o ∈ Ok (and therefore
o 6= ε), we can by means of Ω determine the receiver Rl for each component ol of
the output character o of the transition. If Rl provides an induced transition with
(pRl

, qRl
, ol, o

′) ∈ ∆Rl
, then (~p

[
qk

pk

]
, ~p

[
qk

pk
,

qRl

pRl

]
, ol, o

′,Rl) ∈ ∆P is called an
induced transition of P .

Looking at the receiver determination Ω, we see that in each element ω = (t,R) ∈ Ω
it contains a ”receiver” system R and (within its transition t = (p, q, i, o,S)) a ”sender”
system S. I therefore define:

Definition 3.9: An (abstract) channel is the class of all elements of the receiver determi-
nation Ω with the same sender and the same receiver system.

I thereby partition the receiver determination into equivalence classes or channels char-
acterized by sender and receiver. Channels in this sense reflect the fact that the relation
between the output states of the senders and the input states of the receivers is not neces-
sarily static, but can be dynamic within an interaction, as a system may “send” by one and
the same output state characters to different receivers in different transitions. This channel
concept is obviously ignorant against any transported content.

As protocols obviously are pretty complex entities, I would like to mention some of their
most important and already well known properties. Like Daniel Brand and Pitro Zafiropulo
(BZ83) I define:

Definition 3.10: A protocol P is called well formed if for every transition (~p, ~p
[

qk

pk

]
,

i, o,Ak) ∈ ∆P with i ∈ Iε
k, o 6= ε and each determined receiver R there exists an induced

transition of R
Being well formed, a protocol guarantees that every information exchanged between two
participants is processed.

Definition 3.11: A well formed protocol P is called consistent if for each reachable
protocol state value ~p ∈ QP there exists a (finite) path such that the acceptance conditions
of all participants hold.

A consistent protocol is free of deadlocks and livelocks. In the case of finite automata with

transition, which is not needed in this article..

the acceptance component of a set of final states FP = ×Fi, a consistent protocol always
provides a finite path leading to a final protocol state.

A consistent protocol is self contained in a sense that it first needs no additional input be-
yond the output produced by the participants themselves to fulfill the acceptance condition
and second does not provide any further output to unmentioned participants as all output is
being processed. In this sense it is by itself no I/O-automaton anymore.

Someone has to start the interaction. Thus, the following simple proposition holds:

Proposition 3.5: If being in the initial state does not fulfill the acceptance condition of the
protocol, then a consistent protocol has at least a single participant offering a spontaneous
transition from an initial state value.

3.2 Protocol coupling to a system described as a DFIOA

The life of Edsger W. Dijkstra’s humble programmer (Dij72) would be much easier if she
could separate systems by their interactions as simple as I may have suggested with my
distinction between ”system interaction” and ”system composition”.

Unfortunately, this is not the case. Although protocol based interactions do not necessarily
lead to super system formation, sometimes they do. Namely, if two systems interact such
that within their interaction one of them can be described by a DFIOA. Then both systems
are subsystems of a larger system. That is, the following proposition holds:

Proposition 3.6: Let S be a system determined by more than one consistent interaction
and described by a DFIOA D. It especially interacts with another system U described as
a DFIOA B by the consistent protocol P(A,B) with a set of final states as acceptance
component, where A is an NFIOA describing only a projection of S. Then S and U are
subsystems of a larger system T .

Proof: As U is deterministically described by DFIOA B, the transition relation ∆B of B
defines the system operation fU : QB × IB → QB ×Oε

B with (o, x′) = fU (i, x). Because
the interaction between U and S is described by a consistent protocol, U reacts only to
input of S and has no spontaneous (ε-) transitions.

S is interacting with U by protocol P(A,B) and with other systems, denoted by ∼ U , by
other protocols. The set of input and output characters of S therefore is the set union of the
input and output characters from U and∼ U : IS = IS |U∪IS |∼U and OS = OS |U∪OS |∼U .

To prove the proposition, I construct the supersystem T of S and U . The internal state of
T is composed of the internal state of S and U : QT = QS ×QU and xT = (xS , xU).

For the time evolution of the supersystem T , two cases have to be distinguished: first, there
is no connection between S and U and therefore no transmitted characters between both

and second, according to the receiver determination, there is such a connection.

In the first case, succT (τT) = τT + 1 which corresponds to (succS(τS), τU) and fU =
(fS , id) where id is the identity function.

In the second case, the connection shall be established where the supersystem T is at its
time step τT , S at its time step τS and U is at its time step τU . The relevant transition
of S (which was not induced by a character from U) sends a character to U , initiating an
interaction chain between S and U . Each such terminated interaction chain increments the
time successor function of the supersystem T by one.

This interaction chain terminates under two circumstances

1. U transits such that no character is sent back to S.

2. S transits because of an incoming character by U but does not sent any character
back.

It actually always terminates, because on the one hand, the interaction between S and U
is consistent and on the other hand, S is itself completely determined by D. Thereby, any
class of ambiguous transitions within P(A,B), where a character from U seems to elicit
more than one transitions within S is disambiguated within D by inputs of other systems.
The interaction chain therefore terminates either at a disambiguated branching within S or
at the latest in a state compatible with a terminal states of P .

The system function of the super system results from the successive application of the
system functions of S and U during the interaction chain, similar to subsection 2.1.1.

In the same way, it should be possible to prove that a system composition can result from
an interaction of three participants involved in pairwise interactions, although none of the
interacting partners is described as deterministic with respect to their pairwise interactions.
This should be the case if the transitions of one of the participants are entirely determined
by the interactions with the other two participants.

4 Related work

Jawad Drissi et al. (DYPvB98) use a related approach to consider another problem of
system composition : given two deterministic I/O finite state machines (FSM)A and C that
represent respectively the behavior of a desired system and the behavior of an existing (sub-
)system, does there exist an I/O FSM X which, combined with C, exhibits the behavior of
A? It is interesting to see the similarities and differences of their approach. Drissi et al.
define an I/O nondeterministic FSM as a 5-tuple (Q, I, O, h, q0) where Q is a non-empty
finite set of state values, I, O are non-empty finite set of input and output symbols, q0 is
an initial state and h is a ”total behavior” function h : Q× Iε → P(Q× Oε) \ {∅}. Such
an FSM becomes deterministic when |{h(q, i)}| = 1 for all (q, i) ∈ Q × I . That is, they
do not consider the acceptance component to be part of the behavior description. More
importantly, they assume that transitions without input cannot change the internal state,
or formally h(q, ε) = (q, ε) for all q ∈ Q. They describe systems as labeled transitions

systems (LTS) by quadruples (Q, A,∆, q0) where Q is a non-empty finite set of states, q0

is an initial state, A is a non-empty finite set of actions and δ ⊆ Q× (A ∪ {τ})×Q with
τ is a non-observable action. They say that a deterministic LTS corresponds to an FSM, if
the trace of its observable actions is also generated by the FSM. The observable actions of
the LTS therefore corresponds to I/O-characters of the I/O-FSM. However, the silent action
τ does not seem to correspond to the empty character ε, as according to Drissi et al. the
empty character cannot change the internal state, while the empty action probably can.

The one-step I/O-relation is explicitly modeled as an environment FSM, guaranteeing that a
next external input is only submitted to the system after it has produced an external output.

They make no explicit reference to any state in the sense of this article. Instead, the cou-
pling of multiple LTS is exclusively obtained by coincident naming. An output character
of one LTS that is an input character of a coupled LTS is received by this coupled LTS.
As a result, a transition like (q, q, a, a) with no other accepting transition for character a
originating from q already leads to a live lock.

5 Discussion

In this article, I combined the descriptions of systems with the description of reciprocal in-
teractions in a network context. With section 3.2, I have shown that super system formation
occurs within a reciprocal interaction if a participant interacts deterministically.

First, this approach illustrates the complexity of our system and system composition notion.
It shows that there is more to supersystem formation than mere interaction, as for example
Robin Milner (Mil80; Mil89) or Charles Hoare (Hoa04) still thought. Supersystem forma-
tion in the sense of this article requires the presence of a respective time successor function.
Whether such a time successor function exist or not isn’t always obvious. It underlines that
nondeterministic interactions and therefore nondeterministic automata have an important
role in software engineering (e.g. in contrast to Helmut Balzert (Bal01), p.323).

One basic idea of this approach was to base the definition (2.1) of a system on an inside-
outside distinction, namely to distinguish between externally accessible I/O-states and ex-
ternally inaccessible or internal states. But, the system notion has like the function notion a
recursive structure: systems can be combined to become subsystems in some larger super-
systems. Then, what was formerly an external state with respect to some subsystem may
become internal with respect to the supersystem. Thus, it is not a priori clear, whether a
state is inside or outside a system.

Being a subsystem of some larger supersystem is not a property which can be attributed to
the system itself but - as shown - depends on the context of its interaction, namely whether
its interactions determine its behavior or not. In the case of a reciprocal interaction, a sys-
tem becomes a subsystem if its behavior is entirely determined by its interaction ”partner”.
Such an interaction results in a recursive system where some output becomes the input
of a next time step, until the chain of recursive interaction terminates. This suggests that
sequential and parallel system composition does not exhaust the space of system composi-
tion operations. Taking the relation between our system and function notion even further, it

could be speculated that as for recursive functions in the sense of Stephen Kleene (Kle36),
the composition rules for systems comprises similar recursive rules.

As already mentioned in the introduction, well defined system borders are also a prerequi-
site for the ”end-to-end” argument (SRC84). In their article, Jerome H. Saltzer, David P.
Reed and David D. Clark stated that ”choosing the proper boundaries between functions is
perhaps the primary activity of the computer system designer” and suggested as a guiding
design principle for placement of function among the modules of a distributed system that
”functions placed at low levels of a system may be redundant or of little value compared
with the cost of providing them at that low level”. With operations representing only send
or receive semantics and thereby not determining subsystem relations on the one hand and
with protocol based interactions which in the deterministic case do determine subsystem
relations, the questions where systems logically end may be difficult to decide.

Second, it shows that the borders of finite (computer) systems are theoretically drawn by
logic and sometimes practically restricted by physics. The borders between the internal
”deterministic” parts of an engineered system and the parts that are coupled to it by non-
deterministic interactions are drawn somewhat discretionary but are limited - from an en-
gineering perspective - upon the required level of determinism. Effectively, determinism is
fiction. In a recent study Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber
(SPW09) measured the number of correctable errors of a DRAM-DIMM as nearly 4000 per
year or 10 per day. Accordingly, the hardware manufacturer have to use error correction
mechanism to bring this rate down below an acceptable limit. On the other hand, unre-
liable communication can make reaching consensus impossible, as the coordinated attack
problem shows (Gra78), rendering enforcement of a one step semantic of the ”distributed”
system impossible . So the faster and more reliable communication is, the more it allows
to extend the deterministic fiction to control even ”remote” systems.

Third, the demonstrated tight connection between our system and our function notion con-
tributes to a better understanding, why approaches that rest mainly on the function notion
struggle so much with network-like interacting systems and the necessary ”loose coupling”.
One example would be functional programming (Hud89), other examples are the many dis-
tributed object models like CORBA (Vin97), Java RMI (WRW96), COM/DCOM (Rog98),
SOA (SN96), etc. With the term ”loose coupling” the degree of dependency between sys-
tems is denoted. Although this meaning is more or less common sense, the term is not
used uniformly in the computer science literature. Within the object and service oriented
communities, it is often stated that ”loose coupling” of systems is created by abstraction
(Kay03). Though abstraction decouples from any specific implementation, it does not de-
couple from the particular implementation which is used during runtime and certainly not
from the underlying logical mapping. Actually, this would imply to name a tire ”loosely
coupled” to a car, just because it can be changed easily. It seems to me that this kind of
”loose coupling” is more concerned with the effort to replace a subsystem.

In contrast, Robert B. Glassman (Gla73) defines interacting systems [like cells, organisms
or even societies] as being ”loosely coupled” if they have few states in common: several
(autonomous) systems may sensibly interact without supersystem formation, but only pro-
vide very little information to each other compared to their private state. Determining the
behavior of another system completely initiates supersystem formation and removes any

loose coupling in this second sense. This renders all object models in the object oriented
sense which can be represented as deterministic I/O-automata to subsystems of some larger
supersystem.

Last but not least, The approach to combine the descriptions of systems with the descrip-
tion of reciprocal interactions in a network context also suggests interesting directions of
future research for example in program semantics. With some simplification, semantics
of imperative programs are traditionally understood as ”axiomatic”(Flo67; Hoa69), ”de-
notational” (SS71) or ”operational” (Plo81). ”axiomatic” semantics deals more with the
correctness-relation between specifications - or the intended meaning of a program - and
the actually specified system itself. ”denotational” semantics relates the meaning of a com-
puter program to its mapping from input to output in the mathematical sense of a function.
In ”operational” semantics, a program together with the data is viewed as a description of a
transition system and focuses on the operations a system can perform. With this article, the
system notion comes more to the front. It would be interesting to further explore the possi-
bility to view imperative programming languages as a combination of a system description
calculus together with aspects to deal with the receiver determination problem of network-
like interactions. Thereby the described entities would be systems and not something to
simulate systems as was thought in the beginning of object orientation (DN66). Such a
system description calculus would be complete, if every system (of a given sort) could be
described and it would be sound, if every described system would indeed be a system under
the appropriate interpretation.

Acknowledgments: I thank Prof. Hans-Jörg Kreowski and both referees for their very
helpful comments

References

[Bal01] Helmut Balzert. Lehrbuch der Softwaretechnik. Spektrum Akademischer
Verlag Heidelberg, Berlin, 2 edition, 2001.

[BZ83] Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Ma-
chines. J. ACM, 30(2):323–342, 1983.

[Dij72] Edsger W. Dijkstra. The humble programmer. Commun. ACM,
15(10):859–866, 1972.

[DN66] Ole-Johan Dahl and Kristen Nygaard. SIMULA - an ALGOL-based simula-
tion language. Commun. ACM, 9(9):671–678, 1966.

[DYPvB98] J. Drissi, N. Yevtushenko, A. Petrenko, and G. v. Bochmann. On the design of
a submodule based on the input/output FSM model. Technical Report 1120,
University of Montreal, 1998.

[Far02] Berndt Farwer. ω-Automata. In Erich Grädel, Wolfgang Thomas, and Thomas
Wilke, editors, Automata logics, and infinite games: a guide to current re-
search, pages 4–21. Springer, Berlin, Heidelberg, New York, 2002.

[Flo67] Robert W. Floyd. Assigning Meaning to Programs. In J.T. Schwartz, editor,
Proceedings of American Mathematical Society Symposia in Applied Mathe-
matics, volume 19, pages 19–32. A.M.S., 1967.

[Gla73] R. B. Glassman. Persistence and loose coupling in living systems. Behavioral
Science, 18:83–98, 1973.

[Gra78] Jim Gray. Notes on Data Base Operating Systems. In Operating Systems, An
Advanced Course, pages 393–481, London, UK, 1978. Springer-Verlag.

[Hoa69] Charles A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM,, 12(10):576–585, 1969.

[Hoa04] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985/2004.

[Hol91] Gerard J. Holzmann. Design and validation of computer protocols. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[Hud89] Paul Hudak. Conception, evolution, and application of functional program-
ming languages. ACM Computing Surveys, 21(3):359–411, 1989.

[Kay03] Doug Kaye. Loosely Coupled: The Missing Pieces of Web Services. RDS
Press, 1 edition, 2003.

[Kle36] Stephen Kleene. General recursive functions of natural numbers. Mathema-
tische Annalen, 112(5):727–742, 1936.

[Mea55] George H. Mealy. A method for synthesizing sequential circuits. Bell System
Technical Journal, 34(5):1045–1079, 1955.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Springer, Berlin, Hei-
delberg, New York, 1980.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[Plo81] G. D. Plotkin. A structural approach to operational semantics. Technical
report, Aarhus University Computer Science Department, 1981. DAIMI FN-
19.

[Rei09] Johannes Reich. The relation between protocols and games. In S. Fischer,
E. Maehle, and R. Reischuk, editors, Proceedings der 39. Jahrestagung der
Gesellschaft für Informatik 2009 in Lübeck, GI Lecture Notes in Informatics,
pages 3453–3464. Dt. Gesellschaft für Informatik e.V., 2009.

[Rog98] Dale Rogerson. Inside COM. Microsoft Press, 1998.

[Sch96] Bruce Schneier. Applied Cryptography. John Wiley & Sons, 1996.

[SN96] R. W. Schulte and Y. V. Natis. ”Service-Oriented” Architectures, Part 1.
SPA-401-068, Gartner Group, 1996.

[SPW09] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM errors
in the wild: a large-scale field study. In SIGMETRICS ’09: Proceedings of
the eleventh international joint conference on Measurement and modeling of
computer systems, pages 193–204, New York, NY, USA, 2009. ACM.

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-To-End Arguments in Sys-
tem Design. ACM Transactions on Computer Systems, Vol. 2, No. 4, Novem-
ber1984, Pages 277-288., 2(4):277–288, 1984.

[SS71] Dana Scott and Christopher Strachey. Toward a mathematical semantics for
computer languages. In J. Fox, editor, Proc. Symp. Computers and Automata.
Poytechnic Inst. of Brooklyn Press, 1971. Also Technical Monograph PRG-6,
Programming Research Group, Oxford University.

[Unb93] Rolf Unbehauen. Systemtheorie. R. Oldenbourg Verlag München Wien, 6
edition, 1993.

[vB75] Gregor von Bochmann. Communication protocols and error recovery proce-
dures. In Applications, Technologies, Architectures, and Protocols for Com-
puter Communication. Proceedings of the 1975 ACM SIGCOMM/SIGOPS
workshop on Interprocess communications, pages 45–50. ACM, 1975.

[vB78] Gregor von Bochmann. Finite State Description of Communication Protocols.
Computer Networks, 2:361–372, 1978.

[Vin97] Steve Vinoski. CORBA: Integrating diverse applications within distributed
heterogeneous environments. IEEE Communication, 35(2):46 – 55, 1997.

[WRW96] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for
the javaTM system. In COOTS’96: Proceedings of the 2nd conference on
USENIX Conference on Object-Oriented Technologies (COOTS), pages 17–
17, Berkeley, CA, USA, 1996. USENIX Association.

[Zim80] Hubert Zimmermann. OSI Reference Model - The ISO Model of Architecture
for Open Systems Interconnection. IEEE Transactions on Communications,
COM-28(4):425–432, 1980.

